

Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Results from Ouagadougou, Burkina Faso Site

Elodie Becquey, Gilles Capon and Yves Martin-Prével

December 2009

Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Results from Ouagadougou, Burkina Faso Site

Elodie Becquey, Gilles Capon and Yves Martin-Prével

December 2009

This report is made possible by the generous support of the American people through the support of the Office of Health, Infectious Disease, and Nutrition, Bureau for Global Health, United States Agency for International Development (USAID), under terms of Cooperative Agreement No. GHN-A-00-08-00001-00, through the Food and Nutrition Technical Assistance II Project (FANTA), managed by FHI 360.

The contents are the responsibility of FHI 360 and do not necessarily reflect the views of USAID or the United States Government.

Published December 2009

Recommended Citation:

Becquey, Elodie, Gilles Capon and Yves Martin-Prével. *Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Results from Ouagadougou, Burkina Faso Site.* Washington, DC: Food and Nutrition Technical Assistance II Project (FANTA), FHI 360, 2009.

Contact information:

Food and Nutrition Technical Assistance II Project (FANTA) FHI 360 1825 Connecticut Avenue, NW Washington, D.C. 20009-5721 Tel: 202-884-8000 Fax: 202-884-8432 Email: fantamail@fhi360.org Website: www.fantaproject.org

Table of Contents

Foreword	i
Acknowledgments	ii
Acronyms and Abbreviations	iii
Executive Summary	iv
1. Background	1
2. Dietary Diversity	2
3. Objectives	3
 4. Burkina Faso Study: Original Research Objectives and Context	4
 Methods	6 8
 Results 6.1. Characteristics of Women, and Energy and Macronutrient Intake 6.2. Description of Dietary Patterns 6.3. Micronutrient Intakes and Probability of Adequacy 6.4. Contribution of Food Groups to Nutrient Intakes 6.5. Relationship between Diversity Indicators and Estimated Intakes of Individual Micronutrients 6.6. Relationship between Energy from Specific Food Groups and Mean Probability of Adequacy 6.7. Relationship between Diversity Indicators and Total Energy Intake 6.8. Relationship between Diversity Indicators and Mean Probability of Adequacy 6.9. Performance of Diversity Indicators Using Selected Cut-Offs for Mean Probability of Adequacy 	. 11 . 11 . 14 . 15 . 15 . 15 . 16 . 16
 7. Summary and Discussion 7.1. Dietary Patterns	. 19 . 19 . 19 . 20 . 20
8. Conclusion	. 22
References	. 23
Appendix 1. Tables and Figures, All Women	. 25
Appendix 2. Tables and Figures, Non-Pregnant Non-Lactating Women	. 83
Appendix 3. List of Sub-Groups of the Qualitative Dietary Diversity Questionnaire	142
Appendix 4. Tables for First and Third Observation Days1	143

Text Table	
Appendix 10. References for Nutrient Values in Food Composition Table	164
Appendix 9. Food Composition Table	156
Appendix 8. Comparison of Individual Intakes Assessed by 24-Hour Recall and Weighing Method	155
Appendix 7. Nutrient Intakes and Probability of Adequacy when Immediate Absorption is Assumed for Iron and Zinc	
Appendix 6: Estimated Average Requirements	150
Appendix 5. Women's Food Group Recall in DHS 5	148

Table A.	Food Groups	Summed in Diversity	Indicators 1	12
----------	-------------	---------------------	--------------	----

Foreword

This report is one in a series of technical reports produced under the Women's Dietary Diversity Project (WDDP). The WDDP is a collaborative research initiative to assess the potential of simple indicators of dietary diversity to function as proxy indicators of the micronutrient adequacy of women's diets in resource-poor areas. Work carried out under the WDDP includes the development of a standard analysis protocol and application of that protocol to five existing data sets meeting the analytic criteria established by the project. The data sets analyzed as part of the WDDP are from sites in Bangladesh, Burkina Faso, Mali, Mozambique and the Philippines.

Comparative results across the five sites are presented in a summary report, which will be published in 2010:

Mary Arimond, Doris Wiesmann, Elodie Becquey, Alicia Carriquiry, Melissa C. Daniels, Megan Deitchler, Nadia Fanou, Elaine Ferguson, Maria Joseph, Gina Kennedy, Yves Martin-Prével and Liv Elin Torheim. *Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets in Resource-Poor Areas: Summary of Results from Five Sites.*

Detailed results for each data set are discussed in individual site reports:

- <u>Bangladesh</u>: Mary Arimond, Liv Elin Torheim, Doris Wiesmann, Maria Joseph and Alicia Carriquiry. *Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Results from Rural Bangladesh Site*.
- <u>Burkina Faso</u>: Elodie Becquey, Gilles Capon and Yves Martin-Prével. *Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Results from Ouagadougou, Burkina Faso Site*.
- <u>Mali</u>: Gina Kennedy, Nadia Fanou, Chiara Seghieri and Inge D. Brouwer. *Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Results from Bamako, Mali Site.*
- <u>Mozambique</u>: Doris Wiesmann, Mary Arimond and Cornelia Loechl. *Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Results from Rural Mozambique Site.*
- <u>Philippines</u>: Melissa C. Daniels. *Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Results from Metropolitan Cebu, Philippines Site.*

This report presents the results for the Burkina Faso site.

The WDDP initiative began in 2006. Funding is provided by the United States Agency for International Development (USAID)'s Food and Nutrition Technical Assistance II Project (FANTA-2) and its predecessor project, FANTA, at FHI 360. The WDDP has been a collaboration among researchers from the International Food Policy Research Institute (IFPRI), FANTA, Akershus University College, Food and Agriculture Organization of the United Nations, Institute of Research for Development, Iowa State University, London School of Hygiene and Tropical Medicine, University of North Carolina at Chapel Hill and Wageningen University.

Acknowledgments

Funding for this report was provided by the United States Agency for International Development (USAID) through the Food and Nutrition Technical Assistance II Project (FANTA-2) and its predecessor project, FANTA, at FHI 360.

We are grateful to the Government of Burkina Faso for its support, particularly through the participation of technical teams at ISSP (Institut Supérieur des Sciences de la Population) and at the Direction of Nutrition of the Ministry of Health. We thank the Institute of Research for Development for its financial support for data collection and data analysis. We are grateful to Gilles Capon for his assistance with data analysis and Esmee Doets for her help in checking some values from Food Composition Tables. We gratefully acknowledge the contributions of all members of the Women's Dietary Diversity Project's group. We also thank the FANTA-2 Project's Communication team for its valuable editorial review. Finally, we are very grateful to all the women who participated in the survey.

Acronyms and Abbreviations

AI AUC BLUP BMI BMR CI DHMS DHS DRI EAR FANTA FANTA-2 FAO FCT FGI FGI-6	Adequate Intake Area(s) under the curve Best linear unbiased predictor Body mass index Basal metabolic rate Confidence interval Demographic and Health Monitoring System Demographic and Health Surveys Dietary Reference Intakes Estimated average requirement Food and Nutrition Technical Assistance Project Food and Nutrition Technical Assistance II Project Food and Agriculture Organization of the United Nations Food composition table Food group diversity indicator Food group diversity indicator summed from 6 groups, minimum intake 1 g per group
FGI-6R	Food group diversity indicator summed from 6 groups, minimum intake 15 g per group group
FGI-9 FGI-9R	Food group diversity indicator summed from 9 groups, minimum intake 1 g per group Food group diversity indicator summed from 9 groups, minimum intake 15 g per group
FGI-13	Food group diversity indicator summed from 13 groups, minimum intake 1 g per group
FGI-13R	Food group diversity indicator summed from 13 groups, minimum intake 15 g per group
FGI-21	Food group diversity indicator summed from 21 groups, minimum intake 1 g per group
FGI-21R	Food group diversity indicator summed from 21 groups, minimum intake 15 g per group
g	Gram(s) Hour
h IRD	Institute of Research for Development
ISSP	Institute of Research for Development Institut Supérieur des Sciences de la Population (Higher Institute of Population
	Sciences)
kcal	Kilocalorie(s)
kg	Kilogram(s)
μġ	Microgram(s)
mg	Milligram(s)
MPA	Mean probability of adequacy
NPNL	Non-pregnant non-lactating
	Oral contraceptives
ORC Macro PA	Opinion Research Corporation Macro International, Inc. Probability of adequacy
PhD	Doctor of Philosophy
R1	Round 1 of data collection (first observation day)
R2	Round 2 or second round of data collection (second observation day)
R3	Round 3 of data collection (third observation day)
RAE	Retinol activity equivalent
RE	Retinol equivalent
ROC	Receiver-operating characteristic
SD SEM	Standard deviation Standard error of the mean

TACAM	<i>Table de Composition d'aliments du Mali</i> (food composition table for Mali)
USDA	United States Department of Agriculture
USDA Release	United States Department of Agriculture National Nutrient Database for Standard Reference Release
WDDP	Women's Dietary Diversity Project
WHO	World Health Organization

Executive Summary

BACKGROUND

In resource-poor environments across the globe, low quality monotonous diets are the norm. When grainor tuber-based staple foods dominate and diets lack vegetables, fruits and animal-source foods, risk for a range of micronutrient deficiencies is high. Women of reproductive age constitute one vulnerable group. While information on micronutrient deficiencies is scarce, it is clear that poor micronutrient status among women is a global problem and is most severe for poor women. Information about dietary patterns for women across countries is also scarce, but the Demographic and Health Surveys (DHS) have recently begun to fill this information void.

The broad objective of this study, carried out under FANTA's Women's Dietary Diversity Project (WDDP), is to use an existing data set with dietary intake data from 24-hour (24-h) recalls to analyze the relationship between simple indicators of dietary diversity – such as could be derived from the DHS – and diet quality for women. Adequate diet quality is defined here as a diet that delivers adequate amounts of selected micronutrients, to meet the needs of women of reproductive age. We recognize that definitions of diet quality often include other dimensions, such as moderation and balance. However, because low intakes remain the dominant problem in many of the poorest regions, focus in this work is on micronutrient adequacy only.

Dietary diversity – i.e., the number of foods consumed across and within food groups over a reference period – is widely recognized as a key dimension of diet quality. There is ample evidence from developed countries showing that dietary diversity is indeed strongly associated with nutrient adequacy. There is less evidence from developing countries, but the few available studies of adult women have also supported the association between diversity and nutrient adequacy.

OBJECTIVES

To assess the potential of simple indicators of dietary diversity to function as proxy indicators of diet quality, the following main objectives were identified for the WDDP:

- 1. Develop a set of diversity indicators, varying in complexity, but all amenable to construction from simple survey data
- 2. Develop an indicator of diet quality, using current best practices to assess adequacy across a range of key micronutrients
- 3. Explore relationships among diversity indicators, energy intake and diet quality
- 4. Test and compare the performance of various indicators

As a secondary objective, the WDDP also aimed to characterize micronutrient adequacy for women of reproductive age in each study site.

Indicator performance in just one site is not sufficient to address the broader objective of developing indicators for global use. Therefore, although site-specific results pertaining to objective four are presented in this report, the results for indicator performance are most useful when considered across multiple sites. This discussion is provided in the WDDP summary report.

DATA AND SAMPLING

The Institute of Research for Development (IRD) in Ouagadougou has been involved in several studies exploring the links between dietary diversity and socio-economic and anthropometric characteristics of populations (especially women) in Burkina Faso. In 2005, we undertook an exploratory survey to assess the characteristics of the diet of approximately 1,000 adults, both men and women, in two districts of Ouagadougou, Burkina Faso. In 2006, we carried out another survey, with a random sub-sample of the

women included in the 2005 study, to collect quantitative data about food consumption (24-h recall on three non-consecutive days).

The sample used for this study is from the data collected in 2006, comprised of 182 women aged 17-49 years who completed at least two out of the three 24-h recalls with reliable data. Among them, 168 women had reliable data for the three 24-h recalls. Results are presented for the full sample of 178 women having completed the second round (R2) of 24-h recall and for the non-pregnant non-lactating (NPNL) sub-sample of 130 women also having data for R2. Pregnant (n=13) and lactating (n=35) women were too few in number to report disaggregated results for these specific physiologic groups.

METHODS

Data collection lasted three months, from February to May 2006. Food consumption was recorded on three non-consecutive days for each woman included in the study. On each day of survey, a quantitative 24-h recall questionnaire was administered by a trained female surveyor and a qualitative recall (yes/no for 32 food sub-groups) was administered separately by another female surveyor. In addition, a direct weighing method was used on the day preceding the first 24-h recall, to validate the quantitative 24-h recall method. Standard recipes and portion sizes for all foods consumed out of the home (e.g., street foods, in restaurants) were used.

The food composition table (FCT) for Mali, *Table de Composition d'aliments du Mali* (TACAM), was chosen as the primary source of nutrient data for foods and was supplemented as necessary by other sources, including the Worldfood FCT for Senegal (Worldfood Dietary Assessment System) and the United States Department of Agriculture (USDA) National Nutrient Database for Standard Reference Release 20 (USDA Release 20).

Analytic methods followed the WDDP analysis protocol. Intakes were calculated for energy, protein, animal-source protein, fat, carbohydrates and for eleven micronutrients: thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, vitamin A, vitamin C, calcium, iron and zinc.

Eight dietary diversity indicators were investigated – comprised of 6, 9, 13 and 21 food groups, and each having a 1 g and a 15 g cut-off – corresponding to a progressive disaggregation of main food groups into more specific food sub-groups, and to a minimum amount of consumption required (1 g or 15 g) for each group to be taken into account in a dietary diversity score. The indicators are abbreviated as follows: FGI-6 identifies the six-food-group indicator with a 1 g cut-off; FGI-6R (-R" for -Restricted") identifies the six-food-group indicator with a 1 g cut-off; FGI-6R (-R" for -Restricted") and FGI-9R, FGI-13 and FGI-13R, FGI-21 and FGI-21R.

Probability of adequacy (PA) was calculated for the 11 micronutrients listed above, taking into account both distributions of requirements and distributions of estimated usual intake. Probabilities were averaged across the 11 micronutrients to form a summary indicator of diet quality: -mean probability of adequacy" (MPA).

Correlations and linear regressions were used to describe relationships between the various diversity indicators, energy intake and MPA. Performance of the indicators for prediction of MPA was assessed using receiver-operating characteristic (ROC) analysis, and through examination of indicator characteristics such as sensitivity, specificity and total misclassification.

Data entry was performed with EpiData software, version 3.1. Data quality was ensured by quality checks at data entry, double entry and data cleaning. SAS System version 9.1 was used for all initial data management and to generate the output for **Tables 9a-d** and **N9a-d**. Computation of MPA, the eight dietary diversity indicators and all other statistical analyses were performed with Stata version 10, with the syntax provided to the WDDP working group.

RESULTS

Diets in our study sample consisted mainly of starchy staples and vegetables. Although consumed in small quantities, flesh foods were also frequently consumed. Starchy staples were the largest contributors of energy and carbohydrate intake, but also provided about half of the total protein intake. Although starchy staples are not nutrient dense, they were the principal source of most micronutrient intakes (thiamin, riboflavin, niacin, vitamin B6, iron and zinc). Vitamin A-rich fruits and vegetables, particularly dark green leafy vegetables, were also important sources of micronutrients intakes (calcium and vitamin A particularly). Dairy was not frequently consumed and soy, eggs, poultry, organ meat and small animals like insects or rodents were never or almost never consumed.

Intakes of vitamins A, C and B6, and zinc were quite good among our study sample. On the other hand, intakes of niacin and iron were low and intakes of riboflavin, folate and vitamin B12 were very low.

The dietary diversity indicators were moderately correlated with intakes of most individual micronutrients. Exceptions were poor correlations demonstrated between the diversity indicators and iron and zinc intakes, as well as between the restricted indicators and folate. Stronger correlations were generally shown for the restricted indicators. The strength of all correlations decreased when controlling for energy intake.

The restricted dietary diversity indicators were more powerful predictors of MPA than the non-restricted indicators. In this sample, the indicators with 6 and 9 food groups were not detailed enough to be able to differentiate between the diversity of diets of varying qualities. The indicator with 13 groups performed quite well, but the best predictor of MPA was the indicator with 21 groups.

GENERALIZABILITY

Our study sample consisted of women of reproductive age from two districts in Ouaguodou. Although the results from our study sample cannot be generalized to the whole population of Ouagadougou, there is no reason to think the findings would be different for women of reproductive age in a similar setting (an urban area in a poor African country) with similar dietary patterns.

CONCLUSIONS

In our Burkina Faso sample, dietary diversity indicators were correlated with the probability of micronutrient adequacy. The overall performance of the dietary diversity indicators for prediction of MPA was moderate to good, with the restricted dietary diversity indicators performing better than the non-restricted indicators. Two candidate indicators presented acceptable results to predict MPA: FGI-21R and FGI-13R. Dietary diversity as assessed by these indicators is an interesting alternative for purposes of rapid assessments and/or when resources are limited. At the population level, these indicators could be interpreted as good proxies of the micronutrient adequacy of women's diet.

1. Background

In resource-poor environments across the globe, low quality monotonous diets are the norm. When grainor tuber-based staple foods dominate and diets lack vegetables, fruits, and animal-source foods, risk for a variety of micronutrient deficiencies is high. Those most likely to suffer from deficiencies include infants and young children, and adolescent girls and women of reproductive age. Unfortunately, outside of developed countries, very little information is available on women's micronutrient status, but even with limited data, it is clear that poor micronutrient status among women is a global problem, and is most severe for poor women.¹

Similarly, comparable information about dietary patterns for women across countries is also scarce. The Demographic and Health Surveys (DHS) have recently added questions on mothers' diets in order to begin to fill this information void. The current survey questionnaire includes a set of questions about food groups eaten in the last 24 hours by mothers of young children under three years of age (see **Appendix 5**).²

The broad objective of this study, carried out under FANTA's Women's Dietary Diversity Project (WDDP), is to use an existing data set with dietary intake data from 24-hour (24-h) recall to analyze the relationship between simple indicators of dietary diversity – such as could be derived from the DHS and other surveys – and diet quality for women.

Simple indicators are urgently needed in developing countries to characterize diet quality, to assess key diet problems, such as lack of animal source foods, fruits and vegetables, and to identify sub-groups particularly at risk of nutrient inadequacy. Simple indicators are also needed to monitor and evaluate intervention programs. The present study contributes to development of such simple indicators. At the same time, the study also provides descriptive information on dietary patterns and levels of micronutrient adequacy for women in one resource-poor setting.

For the purposes of this study, adequate diet quality is defined as a diet that has a high probability of delivering adequate amounts of selected micronutrients, to meet the needs of women of reproductive age. We recognize that definitions of diet quality often include other dimensions, such as moderation (e.g., in intakes of energy, saturated/trans fat, cholesterol, sodium, refined sugars) and balance. But because low intakes remain the dominant problem in many of the poorest regions, our focus in this work is on micronutrient adequacy only.

¹ Kennedy and Meyers 2005.

² Appendix 5 excerpts the relevant questions from the model questionnaire; the entire questionnaire is available on the Opinion Research Corporation Macro International, Inc., (ORC Macro) DHS website at: http://www.measuredhs.com/aboutsurveys/dhs/questionnaires.cfm (accessed September 7, 2007).

2. Dietary Diversity

Dietary diversity – i.e., the number of foods consumed across and within food groups over a reference time period – is widely recognized as being a key dimension of diet quality. It reflects the concept that increasing the variety of foods and food groups in the diet helps to ensure adequate intake of essential nutrients, and promotes good health. There is ample evidence from developed countries showing that dietary diversity is indeed strongly associated with nutrient adequacy, and thus is an essential element of diet quality.³

There is less evidence from developing countries where monotonous diets, relying mostly on a few plantbased staple foods, are typical. Even fewer studies from developing countries have aimed to confirm this association specifically among adult women. The available studies have generally supported the association between diversity and nutrient adequacy.⁴ One exception to this was reported in a study from urban Guatemala, but in this study diversity was defined as the number of unique foods consumed over 14 24 hour periods; this meant that even very infrequently consumed items counted in the score.⁵

Previous studies have generally been context-specific, and diversity has been operationalized differently in each study.⁶ While this has made comparisons difficult, it has also suggested that the relationship is robust. This report, along with the companion reports from additional sites, extends knowledge of the relationship between simple diversity indicators and nutrient adequacy for women.

³ Randall, Nichaman and Contant, Jr. 1985; Krebs-Smith et al. 1987; Kant 1996; Drewnowski et al. 1997; Cox et al. 1997; Lowik, Hulshof and Brussaard 1999; Bernstein et al. 2002; Foote et al. 2004.

⁴ Ogle, Hung and Tuyet 2001; Torheim et al. 2003, 2004; Roche et al. 2007.

⁵ Fitzgerald et al. 1992.

⁶ Ruel 2003.

3. Objectives

To assess the potential of simple indicators of dietary diversity to function as proxy indicators of diet quality, the following main objectives were identified for the WDDP:

- 1. Develop a set of diversity indicators, varying in complexity, but all amenable to construction from simple survey data
- 2. Develop an indicator of diet quality, using current best practices to assess adequacy across a range of key micronutrients
- 3. Explore relationships among diversity indicators, energy intake, and the indicator of diet quality
- Test the performance of various indicators using cut-points along the range of diversity scores; assess performance (sensitivity, specificity and total misclassification) relative to various cutoffs for diet quality, as data allow

As a secondary objective, the WDDP also aimed to characterize micronutrient adequacy for women of reproductive age in each study site.

Indicator performance in just one site is not sufficient to address the broader objective of developing indicators for global use. Therefore, although site-specific results pertaining to objective four are presented in this report, the results for indicator performance are most useful when considered across multiple sites. This discussion is provided in the WDDP summary report.⁷

⁷ Arimond et al 2009.

4. Burkina Faso Study: Original Research Objectives and Context

The Institute of Research for Development (IRD) in Ouagadougou has been involved in several studies exploring the links between dietary diversity and socio-economic and anthropometric characteristics of populations (especially women) in Burkina Faso.⁸ Our work has involved an exploratory survey in 2005 to assess the characteristics of the diet of approximately 1,000 adults, both men and women, in an urban area of Burkina Faso. The 2005 survey gathered gualitative information about food habits and food consumption over a one-week period, including food groups consumed (measured as dietary diversity scores) and the frequency of consumption of various meals, snacks and beverages.

The objective of the 2005 survey was exploratory because little information was available about the diet of people living in Ouagadougou. Its intention was to roughly describe the diets among men and women, and to investigate how simple dietary diversity indicators relate to the socio-demographic and economic characteristics of the population and individual nutritional status, assessed through anthropometric indices.

In 2006, we carried out another survey in the same area, and collected quantitative data about food consumption (24-h recall on three non-consecutive days) among a sub-sample of approximately 250 adult women who were involved in the previous study.

The main objective of the 2006 survey was to validate simple dietary diversity indicators as a measure of the micronutrient adequacy of the diet of a sub-sample of women in the 2005 survey. Secondary objectives were to explore links between nutrition knowledge, food habits and the nutritional status of women, and also to examine changes in scores on simple dietary diversity indicators over time among these women (2005 vs. 2006), according to various characteristics. It is data from the 2006 survey that are reported in this study.

4.1. SETTING

The 2005 and 2006 surveys were conducted in two districts of Ouagadougou. According to the most recent census in 2006, Ouagadougou has a population of about 1,181,000. The city is divided into districts with amenities in the town centre (known as -parceled districts"), and peripheral districts without amenities (known as -non-parceled districts"). Beginning in 2002, the Institut Supérieur des Sciences de la Population (ISSP: Higher Institute of Population Sciences) launched a Demographic and Health Monitoring System (DHMS) covering two districts. One parceled district (Wemtenga with about 2,500 inhabitants) and one non-parceled district (Taabtenga with about 3,500 inhabitants) were purposively selected for monitoring. These districts were in-turn chosen for this study because basic sociodemographic and economic information about people living in them was already available, and also for practical and financial reasons.

4.2. SAMPLING AND SURVEY DESIGN

The 2005 and 2006 survey samples were not intended to be representative of the whole population of Ouagadougou. However, prior to data collection in 2005, some socio-demographic and economic data from the two districts were compared (as taken from the DHMS already in place) to the same data taken from the whole Ouagadougou sample of the most recent DHS.¹⁰ It turned out that by equaling the weights of the two districts in the analysis of the DHMS data, the values obtained correctly reflected the mean

⁸ This was the topic of a PhD dissertation by M. Savy.

⁹ This was the topic of a Masters thesis by E. Becquey. Becquey is an investigator of this report, who is currently working on her PhD dissertation on food vulnerability in Ouagadougou, Another investigator, Y. Martin-Prével. supervised the initial work by Savy and is also the current supervisor of Becquey. Gilles Capon assisted with statistical analyses. ¹⁰ 2003.

social and economic situations observed in the DHS sample of Ouagadougou.¹¹ We therefore decided that an equal number of subjects from each district would be selected for the 2005 survey.

For the 2005 study, the targeted number of subjects for the analysis (i.e., observations with complete data) was 250 women and 250 men in each district. To account for refusal and other issues leading to incomplete data, 300 women and 300 men, aged 20-59 years, were randomly selected from the ISSP database in each district, giving a total sample of 1,200 subjects. The final sample was 1,072 subjects and among them 1,060 (551 women and 509 men) had sufficient data to be included in the dietary analysis.

For the 2006 study, one in two women were randomly selected among those who were selected for the first study. A total of 255 women were included, aged 17-65 years.¹² For the purpose of the current study, women older than 49 years were excluded to limit the investigation to women of reproductive age. The final sample was comprised of 182 women aged 17-49 years who had completed at least two out of the three 24-h recalls with reliable data.¹³ Among them, 168 women had reliable data for the three 24-h recalls. There were 13 pregnant women (for whom the trimester of pregnancy was recorded) and 35 lactating women (for whom children's ages were unfortunately not recorded). Results are presented for the full sample of 178 women having completed the second round (R2) and for the non-pregnant non-lactating (NPNL) sub-sample of 130 women also having data for R2. Pregnant and lactating women were too few in number to report disaggregated results for these specific physiologic groups.

To correct for unequal probabilities of being included between the two districts, sample weights were calculated and are available for each observation. Sample weights were used for descriptive statistics, particularly for **Tables 1-9**, **12-15** and **17**, and **N1-N9**, **N12-N15** and **N17**, since those results reflect population-level characteristics. For the remaining tables and figures, sample weights were not necessary, as those results reflect relationships investigated at the individual level.

 ¹¹ This was only true, however, when the mean value of the indicators were compared, but not for their whole distribution.
 ¹² A few women < 20 years of age were included by mistake in the first study (they were included by surveyors in

¹² A few women < 20 years of age were included by mistake in the first study (they were included by surveyors in replacement of women that were absent but without checking the age). Since these women (n=16) were of reproductive age (17 to 19 years), they were retained in the sample for the purpose of the current analysis.

¹³ In addition to women more than 49 years of age, outliers were excluded according to the Goldberg equations (Black 2000).

5. Methods

5.1. DIETARY METHODOLOGY

Food consumption was recorded on three non-consecutive days for each woman included in the study. Only weekdays¹⁴ were considered. On each day of survey, a quantitative 24-h recall questionnaire was administered by a trained female surveyor and a qualitative recall (ves/no for 32 food sub-groups)¹⁵ was administered separately by another female surveyor. In addition, a direct weighing method was used on the day preceding the first 24-h recall. We used standard recipes and portion sizes for all foods consumed out of the home (e.g., street foods, in restaurants).

Validation

The direct weighing performed on the first day was used to validate the quantitative 24-h recall method.

Data collected by the weighing method involved a trained female surveyor spending the whole day with the surveyed woman, from the first meal of the day to the last. Every food consumed was weighed to the nearest gram (g) on a domestic scale. All ingredients of home-cooked dishes were weighed separately before cooking (raw); waste was also weighed. The final dish was weighed before and after cooking, and the portion eaten was also weighed (women were asked to eat from an individual plate). For mixed dishes, staple foods, sauces, and meat or fish pieces were weighed separately. In some cases, the surveyed woman may have eaten a snack outside the home or at night when the surveyor was absent. In these cases, the corresponding consumed quantities were estimated by recall using standard recipes and portion sizes or calibrated household measures (see Section 5.2).

The same principles were followed for the quantitative 24-h recall questionnaire that was administered on subsequent days by another female surveyor. The interview technique was adapted from the Multiple-Pass method:¹⁶

- 1. A list of meals, dishes and all food items consumed was first recorded.
- 2. An exact description of ingredients was asked for all mixed dishes.
- 3. The method of preparation was noted (e.g., time of cooking, cooking receptacle covered or not, number of portions).
- 4. Amounts were assessed separately for each ingredient and for the portions eaten (e.g., weighing of a replica, measure of the volume, use of calibrated household measures, portion sizes or prices).
- 5. Waste and non-consumed parts were estimated.
- Interviewees were systematically prompted for specific foods such as snacks and drinks.

Food intakes obtained by direct weighing and from the corresponding quantitative 24-h recall were compared for energy (in kilocalories [kcal]), carbohydrates, protein and lipids (g), and also for micronutrients.¹⁷ This was performed on a sub-sample of data from 133 women for whom all meals were directly weighed by the surveyor. Matched comparisons using paired t-tests revealed no significant

¹⁴ This includes Saturdays because in Ouagadougou, only Sundays are susceptible to diet modifications as compared to other days. Weekdays were also excluded in case of ceremony, fest or any event that may significantly ¹⁵ See list in Appendix 3.

¹⁶ Raper et al. 2004: 545-55.

¹⁷ Estimations using data collected by the quantitative 24-h recall method are not totally independent of weighing records because some household measures and purchase prices used to estimate the amount eaten by recall were derived from the weighing records (e.g., mean measures among all women, mean prices by district among all women). Consequently, this validation does not mean that the household measures are valid for the whole city of Ouagadougou, but at least are valid for the three rounds of quantitative 24-h recall among our sample.

difference between both methods for energy and for macronutrient intakes.¹⁸ The quantitative 24-h recall method slightly over-estimated quantities of energy and macronutrients recorded by direct weighing, but the mean individual over-estimation in this study remained fairly negligible (2.4 percent for energy, 6.0 percent for lipids, 4.1 percent for proteins and 1.1 percent for carbohydrates); detailed results are given in **Appendix 8**. As for micronutrients, the comparison revealed negligible differences for some (0.6-7.4 percent for thiamin, riboflavin, niacin and vitamin B6), slight differences for others (10.2-15.8 percent for folate, vitamin B12, calcium and iron), but rather large differences for vitamin C (25.9 percent) and vitamin A (44.3 percent). It is highly probable that the over-estimation for vitamins A and C is due to difficulties in estimating the size of mangoes for the quantitative 24-h recall. Nevertheless, as good estimations of micronutrient intakes are very difficult to obtain from a single-day record, ¹⁹ we concluded that the quantitative 24-h recall method provided a reasonable assessment of actual food intakes.

It is worth noting that the survey itself may have affected the consumption of the women, though whether and to what degree this occurred cannot be easily confirmed. First, women were asked to eat with separate plates, even when this was not the usual practice, in order to help the recall of quantities. Second, the presence of the surveyor in the house during the first day may have led some women to prepare better meals than usually eaten. In addition, data collection itself was complicated by the fact that some women were uncomfortable with the presence of the surveyors and asked them to leave the house before the evening meal (these women were excluded from the above comparison, n=67). Finally, the recall for day 1 was probably easier than for the other days because of the weighing.

Data Collection

All surveyors were female because this was likely to create a greater level of comfort for both surveyed women and their husbands, and because female surveyors were found to be more skilled at collecting information about cooking methods, eating habits, market prices, etc. All surveyors followed a six-day training course with theoretical and practical learning, which included a pre-test under real field conditions. According to their demonstrated skills, surveyors were then assigned to one of the following tasks: supervision (2 supervisors), direct weighing (5 surveyors), quantitative 24-h recall (4 surveyors), qualitative dietary diversity questionnaire and anthropometrics (1 surveyor), coding and data entry (3 office agents). Therefore, all qualitative dietary diversity questionnaires and anthropometric data were collected by the same surveyor. To the extent possible, the three 24-h recalls for each surveyed woman were performed by three different surveyors.

Each woman selected for inclusion in the study was fully informed about each step of data collection (e.g., direct weighing, quantitative 24-h recalls, qualitative dietary diversity questionnaire) by the weighing surveyor. A schedule of the days for data collection was established with the respondent. This was done with the help of a supervisor when necessary.

Throughout data collection, which lasted three months, from February to May 2006, supervisors checked the accuracy and completeness of all questionnaires and directly observed a sub-sample of each surveyor's work. We²⁰ also supervised the field work, directly observed a sub-sample of data collected and checked the overall quality of data.

Food was weighed using domestic scales with a precision of 1 g and a maximum weighing capacity of 3 kilograms (kg; Tanita or Philips domestic scales). Anthropometric measurements were taken according to standard techniques.²¹ Weight and body fat, by foot-to-foot bio-impedance measurement, were recorded using a TEFAL Bodymaster scale. Height was measured to the nearest millimeter (mm) with locally-made

¹⁸ However, normality assumption for the t-test was violated in some cases, particularly for micronutrients. The normality assumption was less of a problem for energy and macronutrients.

¹⁹ Ferro-Luzzi 2003: 101-125.

²⁰ Becquey and Martin-Prével.

²¹ WHO 1995.

portable devices equipped with height gauges (SECA 206 Bodymeter). Domestic and Bodymaster scales were calibrated every day with standard weights.

Usual household measures were recorded and calibrated during weighings and quantitative 24-h recalls. For each food or ingredient, the household measure used by the woman was specified and the volume was noted (using water when necessary). The purchase price and weight of the corresponding ingredient was also noted, with all useful precisions (e.g., raw or cooked, dried or fresh, if spoons were flat or domed). For each type of household measure, the values obtained across the whole sample during the weighing were averaged and the mean value was used thereafter for the recall. When only a few values for a household measure has been obtained from interviewees, additional data were obtained by weighing the corresponding ingredients on markets or in some voluntary households. In markets, all prices, selling units and the corresponding weights were also recorded at least once a month for foods which vary in price seasonally. There was only one main market in each district, which most of the women usually went to. Prices were recorded from several vendors at the same market for each ingredient/food. Mean matching values between prices and quantities calculated by district were then used for further calculations.

Two catalogs of recipes were constructed: for dishes prepared and consumed at home and for dishes consumed outside the home. Recipes for dishes cooked at home were recorded from the direct weighing observations. To establish standard recipes for dishes consumed or purchased outside the home, a parallel survey was carried out among restaurants and all types of street-food vendors in the two districts. When recording information about a recipe the following steps were followed:

- 1. Empty cooking receptacles were weighed.
- 2. All ingredients including water were weighed.
- 3. Absorbed oil for fried foods were weighed.
- 4. Waste was weighed.
- 5. Length of time of cooking was recorded and whether cooking receptacles were covered or not.
- 6. Final cooked dish was weighed.
- 7. Empty cooking receptacles were weighed after serving.
- 8. Sample of preparations were observed and weighed; and standard portions for restaurant and street-food recipes were weighed.

Dietary Supplements

Unfortunately, no information is available about the consumption of dietary supplements in our dataset. However, we can assume that such consumption is rare in this setting. During the 2005 survey, only 2.8 percent of women declared that they consumed dietary supplements <u>-from</u> time to time" and only 0.2 percent declared that they consumed dietary supplements regularly.²²

5.2. FOOD COMPOSITION DATA SOURCES

Food Composition Table (FCT)

The FCT for Mali, *Table de Composition d'aliments du Mali* (TACAM),²³ was selected as the primary source of nutrient data for foods because:

- 1. Many foods eaten in our sample were country-specific.
- 2. No complete and consistent FCT exists for Burkina Faso.
- 3. TACAM was the most complete and consistent FCT available for countries in the same region, and most country-specific foods eaten in Ouagadougou were included in it.

²² Data unpublished.

²³ Barikmo et al. 2004.

The second source of nutrient data for foods was another country-specific FCT: the Worldfood FCT for Senegal (Worldfood Dietary Assessment System). A third source was the United States Department of Agriculture (USDA) National Nutrient Database for Standard Reference Release 20 (USDA Release 20). For some rare foods, other sources were used, including local data, data from the food industry or data on a similar food in the FCT with or without taking yield and retention factors into account.

For certain foods information on the content of specific nutrients was not available or not consistent. For these foods we replaced the missing nutrient content with that found in the same FCTs cited above, in the given order of preference. Each nutrient value was adjusted to reflect content per 100 g of dry matter of the original food.

The final FCT used for this study contains 219 foods and is presented in **Appendix 9**. For each food, references are given about the FCT of origin and possible additions or changes in specific nutrient data are specified in **Appendix 10**.²⁴

Retention Factors

Most foods in our FCT were raw foods. In order to take into account losses due to cooking, we applied retention factors (USDA Release 5) to the nutrient content of cooked foods.

Yield Factors

For computation of nutrient consumption, we calculated yield factors from observed data. For each type of dish, we measured the amount of water lost during cooking by weighing each type of dish before and after cooking. One -type of dish" was identified by the name given by the women themselves, not by a common combination of ingredients, though there were generally few, if any, differences between the lists of ingredients and the main ingredient(s) that the recipe name referred to was/were always in the list. Mean yield factors by type of dish were then generalized to the whole sample. This allowed us to calculate the amount of raw ingredients (many ingredients by dish) corresponding to a given amount of each cooked dish.

To calculate the weights of each ingredient eaten when computing the food groups diversity indicators, it was not possible to use observed data from the weighing record as these corresponded to whole dishes and not to specific ingredients. For example, when it was known that a dish of *-riz gras*" lost 15 percent of its water during cooking, it was not possible to differentiate the water lost by tomatoes and water gained by rice. Consequently, to calculate such specific weights, ingredient by ingredient, we used USDA Yield Factors.²⁵

Vitamin A Values

For the purpose of this study, it was decided to express the vitamin A content of food in retinol equivalent (RE). Although the current standard is to use retinol activity equivalent (RAE), recommendations of intake are expressed in RE and have not been converted to reflect the new standard of units. For vegetable foods found in the TACAM and USDA FCT (Release 20), it was therefore necessary to recalculate vitamin A content using the following formula: *vitamin A (RE) = retinol + (beta-carotene / 6).*²⁶

²⁴ For example, a Master's Thesis made some recommendations for updating very specific nutrient contents of the TACAM, and most of these were taken into account for this analysis (Doets 2007).

²⁵ Matthews and Garrison 1975.

²⁶ WHO/FAO 2004.

5.3. IMPLEMENTATION OF THE PROTOCOL

A research protocol was specifically developed for the purposes of the WDDP.²⁷ The protocol provides the background of the project and describes the analysis methods used in this study. Certain aspects of the protocol were flexible, to allow researchers participating in the WDDP to make analysis choices most appropriate to their data set and study setting. Methodology choices specific to our Burkina Faso dataset are described below.

Bioavailability of Zinc and Iron

For the results described in this report, we estimated the bioavailability of iron as 5 percent (only 7.7 percent of iron intake was provided by animal source foods in our sample) and the bioavailability of zinc as 25 percent (56.3 percent of energy intake was provided by starchy staples, most of them with a high extraction rate, such as maize and rice). However, the individual probabilities of adequacy (PA) and the mean probability of adequacy (MPA) obtained with intermediate levels of bioavailability for both iron and zinc were also calculated (**Appendix 7**).

Choice of Food Groups

Some foods could be categorized either as vitamin A-rich or as vitamin C-rich. In these cases, the foods were categorized as vitamin A-rich.

A few items in the FCT were -composite dishes" that could belong to different food groups (a typical example was the hamburger). The mean proportion of each food group in such dishes (proportion of weight) was estimated from local recipes. The total weight of each -composite dish" was then distributed across the different food groups according to the previously determined mean proportions.

Data Entry and Data Management

Data entry was performed with EpiData software, version 3.1. Data quality was ensured by quality checks at data entry, double entry and data cleaning. SAS System version 9.1 was used for all initial data management and to generate the output for **Tables 9a-d** and **Tables N9a-d**. Computation of MPA, the dietary diversity indicators and all other statistical analyses were performed with Stata version 10, with the syntax provided to the WDDP collaborators.²⁸

In our dataset, one intake of vitamin B12 was extremely high (> 200 micrograms [μ g]) as compared to the following highest intake (27 μ g). This was due to a very large amount of liver consumed (> 200 g). We have confidence in the intake; however, the software could not perform the box-cox transformation because of this outlier. Consequently, the vitamin B12 intake of more than 200 μ g was replaced by the next highest intake of 27 μ g.

²⁷ Arimond et al. March 2008; Arimond et al. revised October 2008.

²⁸ Ibid.

6. Results²⁹

6.1. CHARACTERISTICS OF WOMEN, AND ENERGY AND MACRONUTRIENT INTAKE

The total sample size available for analysis was 178 women aged 17-49 years, having completed at least two rounds with reliable data. More than a quarter of the women in the sample were either pregnant (7.6 percent) or lactating (20.5 percent). The mean age was 31.1 ± 7.4 years (Table 1). The literacy rate was quite low for an urban area (only 46.7 percent of the women had ever attended school). Mean height was 163.1 centimeters (cm) and mean weight 61.7 kg, giving a mean body mass index (BMI) of 23.2 ± 4.0 kg/m². More than 60 percent of women had a normal BMI. Only a small percentage of women (9.2 percent) presented a low BMI (< 18.5 kg/m²); however more than 29 percent were overweight (25-29.9 kg/m²; 24.5 percent) or obese (> 30 kg/m²; 4.6 percent) (Table 1).

Mean energy intake was 2,316 kcal (Table 2). The range was guite wide (714-5,242 kcal) and the distribution negatively skewed (the mean was about 120 kcal higher than the median).

The mean intake of protein (61.5 g; **Table 2**) was fairly low and roughly one guarter (14.9 g) came from animal sources. Two thirds of the energy intake came from carbohydrates. The contribution of proteins and fats to the energy intake was 11 percent and 22 percent, respectively, which is in line with the World Health Organization (WHO) recommendations at the population-level (10-15 percent for proteins and 15-30 percent for fats).³⁰

NPNL women in the sample had a slightly lower energy intake (2,235 kcal), and thus a lower macronutrients intake, but proportions of energy brought by macronutrients were similar to those of the whole sample (Table N2). In other words, pregnant and lactating women consumed, on average, a higher caloric diet than NPNL women, but with a similar balance across macronutrients.

6.2. DESCRIPTION OF DIETARY PATTERNS

Eight dietary diversity indicators were investigated – comprised of 6, 9, 13 and 21 food groups, and each having a 1 g and a 15 g cut-off - corresponding to a progressive disaggregation of main food groups into more specific food sub-groups, and to a minimum amount of consumption required (1 g or 15 g) for each group to be taken into account in a dietary diversity score. The food groupings are shown in Table A.

The indicators are abbreviated as follows: FGI-6 identifies the six-food-group indicator with a 1 g cut-off; FGI-6R (-R" for -Restricted") identifies the six-food-group indicator with a 15 g cut-off. Similarly, other indicators are referred to as FGI-9 and FGI-9R. FGI-13 and FGI-13R. FGI-21 and FGI-21R.

At the highest level of aggregation (6 food groups) and with the lowest consumption cut-off (1 g), all women reported consuming starchy staples, and almost all reported consuming fruits and vegetables not rich in vitamin A (95.7 percent), non-dairy animal-source foods (93.9 percent), and vitamin A-rich fruits and vegetables (92.4 percent) (Table 3a). The next most frequently consumed food group was legumes and nuts (84.5 percent). However, only one woman out of six (17.6 percent) reported consuming dairy.

The use of the 15 g cut-off did not reduce the proportion of women consuming starchy staples, fruit and vegetables (not rich in vitamin A), and dairy. However, using the 15 g cut-off reduced the proportion of women consuming the other food groups (i.e., non-dairy animal-source foods, legumes and nuts. vitamin A-rich fruits and vegetables) by an average of 20 percentage points as compared to the 1 g cut-off.

²⁹ Results for the entire sample will be identified as Table 1, 2, 3, etc. and correspond to tables found in Appendix 1. Results for the sample of NPNL women only will be identified as Table N1, N2, N3 etc. and correspond to tables found in Appendix 2. ³⁰ WHO 2003.

	Summed in Diversity in		21 group indicators
6-group indicators	9-group indicators	13-group indicators	21-group indicators
All starchy staples	All starchy staples	All starchy staples	Grains and grain products All other starchy staples
All legumes and nuts	All legumes and nuts	All legumes and nuts	Cooked dry beans and peas Soybeans and soy products Nuts and seeds
All dairy	All dairy	All dairy	Milk/yogurt Cheese
Other animal source foods	Organ meat	Organ meat	Organ meat
	Eggs	Eggs	Eggs
	Flesh foods and other miscellaneous small animal protein	Small fish eaten whole with bones	Small fish eaten whole with bones
		All other flesh foods and miscellaneous small animal protein	Large whole fish/dried fish/shellfish and other seafood Beef, pork, veal, lamb, goat, game meat Chicken, duck, turkey, pigeon, guinea hen, game birds Insects, grubs, snakes, rodents and other small animals
Vitamin A-rich fruits and vegetables	Vitamin A-rich dark green leafy vegetables Other vitamin A-rich vegetables and fruits	Vitamin A-rich dark green leafy vegetables Vitamin A-rich deep yellow/orange/red vegetables Vitamin A-rich fruits	Vitamin A-rich dark green leafy vegetables Vitamin A-rich deep yellow/orange/red vegetables Vitamin A-rich fruits
Other fruits and vegetables	Other fruits and vegetables	Vitamin C-rich vegetables	Vitamin C-rich vegetables
3 - 10 - 10 - 0		Vitamin C-rich fruits	Vitamin C-rich fruits
		All other fruits and vegetables	All other vegetables
			All other fruits

Table A. Food Group	s Summed in Diversit	v Indicators ^a
		,

^a For each set of food groups (6, 9, 13, and 21 groups), two indicators were constructed. The first counted a food group as eaten if at least 1 g was consumed; the second counted the food group if at least 15 g was consumed; thus, a total of eight FGIs were constructed. Grams of intake were assessed based on foods as eaten (e.g., raw, cooked). ^b — Wamin A-rich" is defined as > 60 RAE/100g; —itamin C-rich" is defined as > 9 mg/100g; these represent 15 percent of the NRV.

The highest level of disaggregation (21 food sub-groups) and a 1 g consumption cut-off allowed for distinguishing between the following food sub-groups in our sample:

- Foods included in the composition of traditional dishes: grain products with a sauce made of vegetables (i.e., dark green leafy vegetables; vitamin A-rich orange fleshed vegetables and/or vitamin C-rich vegetables, most frequently tomatoes; other vegetables), with fermented seeds often included as condiments; the corresponding food sub-groups were consumed by between two-thirds and 100 percent of the women in the sample (**Table 3d**)
- Foods often added to the sauce of traditional dishes: mainly fish and/or meat products, which were roughly consumed by one out of two women

- Foods included in the composition of some main dishes that were less frequently consumed: beans and peas (29 percent), non-grain starchy staples (16 percent)
- Foods generally consumed as snacks: groundnuts (but not distinguishable from the fermented seeds), fruits (particularly vitamin A-rich fruits that were consumed by 28.9 percent of the women as the survey took place during the mango season), milk and yogurt (17.2 percent).
- Foods seldom or never consumed: eggs (1.4 percent), poultry (1.3 percent), cheese (0.5 percent), organ meat, insects and soy products (0 percent).

The use of the 15 g cut-off led to a marked decrease in the proportion of women consuming foods often used as condiments, particularly small fish (i.e., fish powder), which dropped from 52.0 percent to 5.4 percent, and nuts and seeds (a large part of which was constituted by soumbala, a fermented seed used as condiment), which dropped from 76.5 percent to 40.5 percent. It also led to a significant decrease in the consumption of foods used in rather small quantities in sauces (i.e., meat, large fish, vitamin A-rich orange fleshed vegetables, dark green leafy vegetables, other vegetables) or eaten in small quantities (vitamin C-rich fruit, constituted in large part by cola-nut). Otherwise, the proportion of women consuming the food group remained the same or the decrease was minimal. For NPNL women, the dietary patterns were roughly the same.

The above observations were confirmed by reviewing the quantities consumed for each food group (**Tables 4a-d**). Diets in this study's sample were dominated by starchy staples, which provided the main source of energy. On average, women ate more than 1,300 g of starchy staples per day, contributing more than 1,300 kcal to the diet per day (**Table 4a**). Legumes and nuts were the second major contributor to energy, providing 235 kcal per day on average and 278 kcal among those who consumed them.

On average, consumption of vitamin C-rich fruit and milk/yogurt was slightly higher among NPNL women than for all women taken together (+7.1 g and +2.1 percentage points among vitamin C-rich fruit consumers; +26.9 g and +1.0 percentage point among milk/yogurt consumers). On the other hand, consumption of grains and beans and peas was slightly lower (-84.5 g and -0.4 percentage points, and - 15.8 g and -1.5 percentage points respectively). But on the whole, consumption patterns were similar (**Table N4d**).

When food groups were disaggregated, it was clear that for some groups the median quantity eaten among those who consumed them was far less than 15 g (e.g., small fish group: 5.0 g, vitamin A-rich orange vegetables: 4.1 g; **Table 4d**), thus explaining the differences in the frequency of consumption when shifting the cut-off from 1 g to 15 g. It is also worth noting that for many sub-groups the median quantity consumed was around the value of 15 g (e.g., nuts and seeds, poultry) or only slightly above (e.g., meat, large fish). This latter fact at least partly explains why the mean diversity scores ranged from 4.8 food groups (for FGI-6) to 7.3 food groups (for FGI-21) when using a 1 g minimum consumption cut-off, while the mean scores ranged from 4.2 food groups (FGI-6R) to 4.9 food groups (FGI-21R) when using a 15 g minimum consumption cut-off (**Table 5**). The difference in mean score was also minimal between FGI-6 and FGI-9, whether the consumption minimum was restricted or not, while the difference was more substantial when shifting from 9 to 13 food sub-groups. The distribution for all dietary diversity indicators was skewed, though this was most pronounced when using the 1 g minimum consumption cut-off as opposed to the 15 g cut-off (**Table 6** and **Figures 35-42**).

Cross-tabulation of diversity scores against the proportion consuming each food group provides a picture of how diets are diversified (**Tables 7a-h**). This picture varies slightly according to the number of food groups in the score and whether the consumption cut-off was restricted (15 g) or not (1 g). However, low and very low scores (two or three) generally reflected the traditional dishes, namely a staple (most often a grain) accompanied by a sauce made of vegetables (green leafy vegetables or vitamin C-rich vegetables), legumes and nuts (mainly fermented seeds as condiments and/or groundnut in the sauce), and with some flesh foods, when scores reached three or four (depending on the total number of groups). When scores increased further, vitamin C-rich vegetables and flesh foods were included in the diet quite systematically; thereafter the consumption of legumes and nuts and other fruits and vegetables also

increased, reflecting additional ingredients in the dishes and/or a higher number of meals in the day. Dairy and vitamin A-rich fruits were the last food groups to appear in the diet, while other groups were never or almost never consumed.

6.3. MICRONUTRIENT INTAKES AND PROBABILITY OF ADEQUACY

As is usual in resource-poor settings, the distributions for micronutrient intakes were skewed (**Figures 1-1**).

For some micronutrients (i.e., riboflavin, niacin, folate, vitamin B12), median intakes were below (far below for vitamin B12) the estimated average requirement (EAR), and the median intake of calcium was less than half of the adequate intake (AI) (i.e., 1,000 milligrams [mg]). Vitamin C, vitamin A and zinc were the only nutrients with median intake values largely above the EAR.

The probability of adequacy (PA) for each nutrient incorporated information from three rounds (or two rounds when one round was missing) so that intra-individual variability was taken into account. Even if the distribution of intake was similar across rounds (not shown), intra-individual variations could be very high. Most of the nutrients presented a non-normal PA distribution; some distributions were highly skewed while other distributions were bimodal with most values either close to zero (null probability of covering the needs) or to one (needs adequately covered) (see **Figures 23-33**). The most notable exception was for calcium, which had a positively skewed distribution, likely due in part to the method used to estimate PA.

Due to the shape of the PA distributions, the mean and median PA values were often quite different. The mean PA was very low for vitamin B12 (0.04), folate (0.12) and riboflavin (0.13), and the median PA was estimated as 0.00 for these three nutrients. The mean and median PA were also low for niacin (mean=0.20, median=0.06), iron (mean=0.26, median=0.15) and calcium (mean=0.31, median=0.25). On the other hand, the mean and median PA were quite high for vitamin C (mean=0.68, median estimated as 0.99), vitamin A (mean=0.67, median=0.97), zinc (mean=0.71, median=0.94) and, to a lesser extent, for vitamin B6 (mean=0.60, median=0.65). For thiamin, the mean and median PA was intermediate (mean=0.44, median=0.38).

The mean probability of adequacy (MPA) across these 11 micronutrients – a summary measure describing the extent to which women's diets meet their full micronutrient needs – was low in our sample (0.38).

Mean and median intakes of micronutrients among NPNL women were similar to those of the whole sample. Not withstanding the exception of iron whose PA was much lower, and niacin, calcium and zinc whose PA were similar, the MPA for other nutrients was higher, and sometimes far higher (mean +4 percentage points). This is due to the more substantial needs of pregnant and lactating women, who are included along with NPNL women in the whole sample. For iron, mean intake was slightly lower among NPNL women and, despite lower nutrient requirements, the PA of iron was also clearly lower than for all women taken together (0.15 vs. 0.26), due to higher iron bioavailability assumed for pregnant and lactating women.

When considering higher bioavailability levels for iron and zinc (moderate levels are 10 percent for iron and 34 percent for zinc), the mean probability of adequate intake for iron rose from 0.26 to 0.77 and for zinc rose from 0.71 to 0.93. This led to an increase of 6 percentage points in the mean probability of micronutrient adequacy (**Appendix 7**). However, this sample included some pregnant women for whom the bioavailability of iron depended on their physiological status and was not affected by the hypothesis of higher bioavailability levels. In the NPNL sample, the mean probability of adequate intake for iron rose from 0.15 to 0.68 (and for zinc rose from 0.70 to 0.95). This led to a mean increase of 7 percentage points in the mean probability of micronutrient adequacy.

6.4. CONTRIBUTION OF FOOD GROUPS TO NUTRIENT INTAKES

Tables 9a-d show how the different food groups contributed to nutrient intake. Starchy staples notably contributed significantly to energy and protein intake (56.3 percent and 47.9 percent respectively), and also to the intake of most micronutrients (27.8-61.6 percent) (**Table 9a**). Vitamins B12, C and A were the only nutrients to which starchy staples did not contribute substantially (< 10.0 percent), and calcium the nutrient to which it contributed moderately (14.9 percent). Legumes and nuts also contributed moderately to the intake of most micronutrients (11.4-29.1 percent), with the exceptions of vitamins B12, A, C and B6. Vitamin B12 – the micronutrient whose needs were the least covered – was mainly provided by animal-source foods (74.0 percent). However, for all other micronutrients except niacin and calcium, animal-source foods were poor contributors to nutrient intakes because they were eaten in small quantities. Dark green leafy vegetables, on the other hand, contributed significantly to the intake of several micronutrients, particularly vitamin A (43.6 percent) and calcium (30.2 percent). On the whole, two thirds of vitamin A intake and one third of calcium intake came from vitamin A-rich fruits and vegetables. Vitamin C intake was provided largely by vitamin C-rich fruits and vegetables (46.3 percent) and vitamin A-rich fruits and vegetables – including mango, rich in both vitamins C and A (36.1 percent). Only 1.4 percent of vitamin C intake was provided by other fruits and vegetables.

6.5. RELATIONSHIP BETWEEN DIVERSITY INDICATORS AND ESTIMATED INTAKES OF INDIVIDUAL MICRONUTRIENTS

Except for folate (not correlated with non-restricted scores), iron and zinc, most individual micronutrient intakes were positively correlated with the eight dietary diversity indicators (**Table 10**). When controlling for energy intake (because energy intake was also positively and significantly correlated with all indicators except FGI-6), the strength of the correlations became weaker but remained significant for all nutrients, except thiamine, riboflavin, calcium and folate. Vitamins C and A were most strongly correlated with the dietary diversity indicators, with or without controlling for energy intake (0.252-0.499, p < 0.001). Niacin also showed strong correlations, as did vitamin B12, though to a lesser extent. Iron and zinc, on the other hand, showed poor correlations with the indicators (-0.111-0.256), and the correlations were mostly not significant.

Dietary diversity indicators with a 15 g minimum consumption cut-off (restricted indicators; FGI-6R, FGI-9R, FGI-13R and FGI-21R) generally showed better correlations with individual micronutrient intakes than indicators requiring a 1 g minimum consumption (non-restricted indicators; FGI-6, FGI-9, FGI-13 and FGI-21), except for calcium, vitamin B12, iron and zinc. This pattern persisted whether or not energy was controlled for. There was no dietary diversity indicator in terms of the number of food groups, which clearly demonstrated a stronger correlation across all individual micronutrient intakes (**Table 10**).

Results were similar for NPNL women and correlations of micronutrient intakes with the dietary diversity indicators were slightly stronger than those of the whole sample, except for vitamin B12 and thiamin intakes which showed a slightly weaker correlation.

6.6. RELATIONSHIP BETWEEN ENERGY FROM SPECIFIC FOOD GROUPS AND MEAN PROBABILITY OF ADEQUACY

The correlations between the energy contributed by each food group and MPA were fairly weak (**Tables 11a-d**). In the most disaggregated dietary diversity indicator (21 food groups; see **Table 11d**), only four food groups were significantly correlated with MPA and only three of them (vitamin A-rich fruits, dark green leafy vegetables and the beef, pork, veal, etc. food group) remained significant when controlling for total energy intake. The correlation between the nuts and seeds food group and MPA was no longer significant when controlling for total energy intake. On the other hand, the correlation between grains and MPA became negative and significant when controlling for total energy intake, meaning that caloric intake due to grains rose faster than nutrient intakes due to that group.

With aggregation of food groups in the dietary diversity indicators, a correlation between energy from starchy staples and MPA appeared without control for total energy. Flesh foods, vitamin A-rich fruits, dark green leafy vegetables and starchy staples were the only food groups showing a positive correlation between energy and MPA at all levels of aggregation with or without controlling for total energy (**Tables 11a-d**).

For NPNL women, the distribution of MPA was shifted to the right as compared to the distribution for the whole sample (**Figures 34** and **N34**). However, there was roughly the same energy intake for the whole sample and for NPNL women. Therefore, the relationship between energy from specific food groups and MPA gave quite different results for the two samples. Correlations were mostly stronger among the sample of NPNL women. Energy from starchy staples (if no control for total energy) and flesh foods (when controlling for energy with 6 or 9 food groups) were not significantly correlated with MPA. One food group (nuts and seeds) remained significantly correlated with MPA after controlling for energy intake at all levels of disaggregation.

6.7. RELATIONSHIP BETWEEN DIVERSITY INDICATORS AND TOTAL ENERGY INTAKE

For all dietary diversity indicators, mean total energy intake increased consistently with the number of food groups eaten, except for FGI-9R, FGI-13 and FGI-21 where energy intake did not increase or increased irregularly (**Table 12**). In other words, the general pattern illustrated that, on average, the more diverse the diet was, the more caloric it was. This was confirmed by the correlation coefficients measuring the relationships between dietary diversity scores and energy intake (**Table 13**). All linear correlations were significant, except for FGI-6. Moreover, the strength or the coefficient increased with the number of food groups and with restriction.

Results for the NPNL sample were quite different. Two restricted indicators – FGI-6R and FGI-9R – showed decreased correlations with total energy intake. The same indicators, when not restricted – FGI-6 and FGI-9 – showed higher correlations than other non-restricted indicators.

6.8. RELATIONSHIP BETWEEN DIVERSITY INDICATORS AND MEAN PROBABILITY OF ADEQUACY

Despite the wide range of MPA across score levels, MPA increased fairly consistently with diversity score for each dietary diversity indicator except FGI-6 (**Table 14**). The more diverse the diet was, the better the overall micronutrient needs were met by the diet. All dietary diversity indicators were significantly correlated with MPA (correlation coefficients r=0.236 to 0.438) (**Table 15**).

Although adjustment for energy intake attenuated the correlation between the dietary diversity indicators and MPA (r=0.162 to 0.356), the correlation remained statistically significant for all indicators (**Table 15**). This shows that a part of the increase in MPA was due to increase of diversity score, but another part was due to an increase in caloric intake (i.e., quantities). The strongest correlation, when controlling for energy, was demonstrated for FGI-21R (r=0.356).

Results were similar for NPNL women, though stronger correlations were consistently demonstrated, with or without controlling for total energy intake (r=0.272 to 0.468 with control and r=0.201 to 0.394 without).

Analysis of the determinants of MPA by multiple linear regression (**Table 16**) confirmed that dietary diversity was a significant determinant of MPA along with total energy intake. Models taking energy into account made better models (adjusted R² were far higher, between 0.460 and 0.515 when controlling for energy as compared to 0.076 to 0.194 without controlling for energy). After adjusting for energy intake, the contribution of the dietary diversity indicators to explaining the variability in MPA decreased but still remained significant. Restricted dietary diversity indicators were better predictors than non-restricted indicators (beta=0.049 to 0.064 for restricted; beta=0.020 to 0.055 for non-restricted). The highest adjusted R² was found for both models using FGI-9R and FGI-21R as the dietary diversity indicator to predict MPA. Pregnancy status could not be taken into account in the model since, for unexplained

reasons, the software dropped the corresponding variable. Age and height had no influence on MPA, but lactation status was a strong negative determinant of MPA.

Results were similar for NPNL women, where the model including FGI-21R was slightly better than the one including FGI-9R (adjusted R²=0.548 and 0.540, respectively).

6.9. PERFORMANCE OF DIVERSITY INDICATORS USING SELECTED CUT-OFFS FOR MEAN PROBABILITY OF ADEQUACY

To study the predictive power of diversity indicators, it was necessary to determine a cut-off for MPA, to define what would be an acceptable MPA. Ideally, an acceptable MPA would be 100 percent. No woman in our sample reached that value. Three women (1.6 percent) reached 80 percent MPA, thirteen women (7.4 percent) reached 70 percent and 28 women (15.1 percent) reached 60 percent (**Table 17**). We concluded 70 to be the highest MPA cut-off with enough women above the cut-off. The following discussion focuses on this cut-off and on a cut-off of 60 percent.

At the cut-off of 70 percent, all of the eight dietary diversity indicators led to receiver-operating characteristics (ROCs) with areas under the curve (AUC) superior to 0.500, which is the limit of -no information" (**Table 18**). The best predictor was FGI-21R (AUC = 0.802). FGI-13R and FGI-21 also had AUCs \geq 0.700, which corresponds to a good quality of prediction. While all the ROCs were different from the -non-informative" curve, there were not many significant differences among them (p \geq 0.05), except that AUC for FGI-21R was different from AUC for FGI-6R, FGI-9R, FGI-13 and FGI-21, and that AUC for FGI-13R was different from those for FGI-6R and FGI-9R (**Table 19**). The 60 percent MPA cut-off gave the same results as above with weaker AUC, though the AUC for FGI21-R was significantly better than all other AUC (p \leq 0.052).

At an MPA cut-off of > 70 percent, the AUC for NPNL women tended to be similar to the whole sample (-0.008 to +0.029), and increased using a 60 percent cut-off (+0.001 to +0.038). The precision of the measure remained roughly stable despite the significant decrease in the number of subjects (**Table N18**). FGI-21R remained the best predictor of MPA at the 70 percent cut-off (AUC=0.798), though four out of the six dietary diversity indicators with 9 or more food groups also reached AUCs \geq 0.700. At the 60 percent cut-off, AUC for FGI-21R was significantly better than the others at the limit α =0.05, except for FGI-9 and FGI-13R; however, its AUC (0.790) was far higher than those of FGI-9 (0.692) and FGI-13R (0.740), even if not significantly different (p=0.129 and p=0.135, respectively).

The dietary diversity indicator that performed well in both samples and had a significantly better AUC than the other indicators was FGI-21R (AUC=0.768 to 0.802, whatever the cut-off for MPA or the sample). The next-best performing indicator was FGI-13R, even if its AUC was not significantly different from most of other indicators' AUC.

Dietary diversity score cut-offs were investigated to explore whether or not a dichotomous dietary diversity indicator could be used to predict subjects meeting a MPA > 60 percent or MPA > 70 percent (Tables 20a-h and N20a-h). For non-restricted indicators, no dietary diversity score cut-off led to both a sensitivity and a specificity of at least 50 percent (< 50 percent is not acceptable) for prediction of MPA > 60 percent and MPA > 70 percent in the whole sample. On the other hand, a cut-off could be identified for each restricted indicator. The dietary diversity score cut-off by indicator was always the same no matter the MPA cut-off was used (60 percent or 70 percent). For both FGI-6R and FGI-9R, a dietary diversity score cut-off of \geq 5 was identified (for all women and NPNL women), but neither sensitivity nor specificity exceeded 65 percent. For FGI-13R, a dietary diversity score cut-off of \geq 5 was also identified as the best, and though sensitivity and specificity were moderately good, this cut-off slightly favored sensitivity over specificity (i.e., better identified women meeting the MPA than women failing to meet the MPA). To predict an MPA > 60 percent with a cut-off ≥ 5, sensitivity was 71.4 percent (80.0 percent for NPNL women) and specificity was 51.3 percent (53.6 percent for NPNL women). For FGI-21R, the best cut-off that predicted the meeting of a 60 percent MPA was at the level of \geq 6. This cut-off also favored sensitivity (80.0 percent) over specificity (70.9 percent) in the NPNL sample, but sensitivity and specificity were balanced (71.4 percent and 72.0 percent) in the whole sample. The total proportion of misclassification was guite

high with both indicators (from 27.7 percent for FGI-21R and 28.1 percent for FGI-13R in the NPNL sample to 42.3 percent for FGI-21R and 45.5 percent for FGI-13R in the whole sample).

7. Summary and Discussion

7.1. DIETARY PATTERNS

Diets in our urban Burkina Faso sample consisted mainly of starchy staples (100 percent of sample consumed) and vegetables (95.7 percent). Fats intake was quite high (22 percent of energy intake). Although consumed in small quantities, flesh foods were also frequently consumed (93.9 percent of sample consumed).

Starchy staples were the largest contributors of energy and carbohydrate intake, but also provided about half of the total protein intake. Although starchy staples are not nutrient dense, they were the principal source of most micronutrient intakes (thiamin, riboflavin, niacin, vitamin B6, iron and zinc). Vitamin A-rich fruits and vegetables, particularly dark green leafy vegetables, were also important sources of micronutrients intakes (calcium and vitamin A particularly). Dairy was not frequently consumed and soy, eggs, poultry, organ meat and small animals like insects or rodents were never or almost never consumed.

Using FGI-6R, diets appeared quite diverse (mean=4.2). However, when using a more disaggregated indicator, the diets did not appear very diverse in terms of specific food groups (mean=4.9 for FGI-21R).

7.2. MICRONUTRIENT INTAKES AND ADEQUACY

Intakes of vitamin A, vitamin C, zinc and vitamin B6 were quite good in the sample setting. On the other hand, intakes of niacin and iron were low and intakes of riboflavin, folate and especially vitamin B12 were extremely low given the diversity of the diet. Therefore, animal-source foods, including dairy, should be consumed either in larger quantities or more frequently to improve intake of vitamin B12.³¹

Given women's physiologic status, nutrient needs are different. Thus probability of adequacy can be different for the same nutrient intake. In our sample, women's physiologic status did not modify average micronutrient intakes. Not surprisingly, however, NPNL women had better probability of adequacy for all micronutrients (except iron) than the whole sample. For iron, it was assumed that pregnant women had a better absorption (23 percent) than NPNL and lactating women (5 percent), which explains the better probability of adequacy for iron found with the whole sample.

7.3. RELATIONSHIP BETWEEN FOOD GROUP DIVERSITY, DIET QUALITY AND ENERGY INTAKE

The dietary diversity indicators were significantly correlated with energy intake (0.138-0.276). The more the food groups were disaggregated, the more strongly correlated the diversity indicators were to energy intake - indicating larger quantities of food intake with high diversity scores in the most disaggregated indicators. The dietary diversity indicators were also moderately correlated with intakes of most individual micronutrients (0.099-0.499). Exceptions were poor correlations demonstrated between the diversity indicators and iron and zinc intakes, as well as between the restricted indicators and folate. Stronger correlations were generally shown for the restricted indicators. The strength of all correlations decreased when controlling for energy intake.

Only a few food groups had energy intakes that were significantly correlated with MPA: vitamin A-rich fruits (also rich in vitamin C), dark green leafy vegetables, flesh foods, legumes and nuts, and starchy staples. Other groups – some of which are known to be nutrient dense – were not significantly correlated

³¹ Vitamin B12 values in this study's FCT are quite low as compared to other FCTs. It is worth noting that these values have been reexamined by Doets as a follow-up study of her Master's thesis (see footnote 24) and it was concluded that these lower Vitamin B12 values can reflect particularities for some local foods (e.g., beef). Also, quantities of vitamin B12-rich foods consumed were often low.

with MPA (e.g., dairy). Starchy staples, which provided the majority of most micronutrient intakes, were negatively correlated with MPA when controlling for total energy intake. This indicates that a larger increase in quantity was required to obtain a substantial increase in micronutrients as compared to other food groups.

In our sample setting, where diets were moderately diverse, the increase in the overall micronutrient adequacy of the diet was due to both an increase in variety and an increase in quantity. Limiting the analysis to NPNL women substantially improved the correlations. This is understandable from a theoretical point of view. Due to higher needs on the one hand but similar dietary patterns to NPNL women on the other, pregnant and lactating women had lower MPA than the NPNL women in the sample. This introduced some noise into the results when considering the whole sample. While dietary diversity indicators can be useful to predict MPA for both NPNL women and pregnant and lactating women, an acceptable dietary diversity indicator (and cut-off score) for NPNL women would not be automatically acceptable for pregnant and lactating women because the latter group has different nutrient intake requirements.

7.4. INDICATOR PERFORMANCE

As seen through previous results, the restricted dietary diversity indicators were more powerful predictors of MPA than the non-restricted indicators. In this sample, the indicators with 6 and 9 food groups were not detailed enough to be able to differentiate between the diversity of diets of varying qualities. The indicator with 13 groups performed quite well, but the best predictor was definitely the indicator with 21 groups. From an operational point of view, however, an indicator with less food groups would have been preferable for its simplicity.

FGI-21R and FGI-13R both showed good AUC for cut-offs of 60 percent and 70 percent MPA (AUC \geq 0.700), particularly when considering NPNL women separately. However, the results of sensitivity and specificity analyses were only moderately good. Both sensitivity and specificity were better for FGI-21R (71.4 percent and 72.0 percent at the cut-off of \geq 6).

7.5. PRELIMINARY IMPLICATIONS FOR OPERATIONALIZING FOOD GROUP DIVERSITY

As with other WDDP sites, in our urban Burkina Faso sample, the restricted dietary diversity indicators were shown to perform better than the non-restricted indicators. This is a challenge for operationalization, however, because the principle of dietary diversity indicators such as those tested in this sample (and one of their major strengths for simple surveys) is to focus only on types of foods eaten and not on the quantities consumed.

The restrictions in our sample were mainly influenced by foods consumed as condiments (e.g., tomato paste, soumbala, dried fish) or by very specific foods (e.g., cola-nut). The challenge for operationalization could therefore be overcome. These foods, consumed in small quantities, could easily be identified and recorded separately in the questionnaire. Certain foods such as fresh fish and flesh foods can be consumed in small quantities. Analyses could be re-run to identify if, for these specific food groups, not considering any cut-off point would have an impact on the performance of the indicators. If yes, when designing the questionnaire, attention should be paid to defining household measures as clearly as possible in order to identify the minimum quantity that should be eaten.

7.6. GENERALIZABILITY

Our sample consisted of women from two districts that represented the two clear types of settings existing in Ouagadougou: one district was parceled (with amenities) while the other was non-parceled (no amenities). We initially planned to run separate analyses in order to explore the performance of the indicators in the two contrasting settings within the same city, however were limited by sample sizes.

Results cannot be generalized to the whole population of Ouagadougou. However, in a similar setting (an urban area in a poor African country) with similar dietary patterns, there is no reason to think results would not be similar.

8. Conclusion

In our Burkina Faso sample, dietary diversity indicators were correlated with the probability of micronutrient adequacy. Two candidate indicators presented acceptable results to predict MPA: FGI-21R and FGI-13R. However, with cut-offs of \geq 6 and \geq 5 respectively, they identified only 72 and 51 percent of women with an MPA below 60 percent, respectively (specificity), and each identified 71 percent of women with an MPA above 60 percent (sensitivity; all women).

Our sample setting was urban and characterized by quite a wide range of dietary diversity and energy intake. It would be interesting to compare the results of our study to results from samples in other urban settings with equally diverse diets in order to assess whether the moderate performances of the indicators can be explained by the overall diversity of diets or if they are due to some specific dietary patterns in our sample.

The overall performances of the indicators were moderate to good. A precise assessment of the micronutrient adequacy of the diet requires data collection on several days as well as surveyors with specific skills, and is therefore very expensive to obtain. Dietary diversity as assessed by the eight indicators explored here provides an interesting alternative for purposes of rapid assessments and/or when resources are limited. In addition, such indicators could be of use for monitoring and targeting of interventions in similar urban contexts. At the population level, these indicators could be interpreted as good proxies of the micronutrient adequacy of women's diet.

References

- Arimond, M., D. Wiesmann, E. Becquey, A. Carriquiry, M. Daniels, M. Deitchler, N. Fanou, E. Ferguson, M. Joseph, G. Kennedy, Y. Martin-Prével, and L. E. Torheim. 2009. *Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets in Resource-Poor Areas: Summary of Results from Five Sites*. Washington, DC: FANTA at FHI 360.
- Arimond, M., D. Wiesmann, L. E. Torheim, M. Joseph, and A. Carriquiry. Revised October 2008. Validation of Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Background and Research Protocol. Washington, DC: FANTA at FHI 360.
- ---. March 2008. Validation of Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Addendum to Research Protocol. Washington, DC: FANTA at FHI 360.
- Barikmo, I., F. Ouattara, and A. Oshaug. 2004. *Table de composition d'aliments du Mali*. Oslo: Akershus University College.
- Becquey, E. July 2006. [Validation of a Food Dietary Diversity Indicator as a Measure of Nutritional Adequacy of the Diet in Ouagadougou (Burkina Faso)]. Masters Thesis. University of Paris 6 (France).
- Becquey, E., and Y. Martin-Prével. November 2007. Validation of Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets – Basic Descriptive Information on the IRD Data Set. Ouagadougou, Burkina Faso: IRD.
- Bernstein, M. A., K. L. Tucker, N. D. Ryan, E. F. O'Neil, K. M. Clements, M. E. Nelson, W. J. Evans, and M. A. Fiatarone Singh. 2002. Higher Dietary Variety Is Associated with Better Nutritional Status in Frail Elderly People." *Journal of the American Dietetic Association* 102: 1096-1104.
- Black, A. E. 2000. –Gritical evaluation of energy intake using the Goldberg cut-off for energy intake: basal metabolic rate [BMR]. A practical guide to its calculation, use and limitations." *International Journal of Obesity* 54: 395-404.
- Cox, D., J. Skinner, B. Carruth, J. Moran III, and K. Houck. 1997. A Food Variety Index for Toddlers (VIT): Development and Application." *Journal of American Dietetic Association* 97: 1382-86.
- Doets, E. L. 2007. Quality Evaluation and Update of the Food Composition Table of Mali (TACAM 2004). Master Thesis. Wageningen University (The Netherlands).
- Drewnowski, A., S. A. Henderson, A. Driscoll, and B. J. Rolls. 1997. The Dietary Variety Score: Assessing Diet Quality in Healthy Young and Older Adults." *Journal of the American Dietetic Association* 97: 266-71.
- Ferro-Luzzi A. 2002. Idividual food intake survey methods in proceedings: Measurement and assessment of food deprivation and undernutrition". International Scientific Symposium in Rome, Italy, 26-28 June.
- Foote, J. A., S. P. Murphy, L. R. Wilkens, P. P. Basiotis, and A. Carlson. 2004. Detary Variety Increases the Probability of Nutrient Adequacy Among Adults." *Journal of Nutrition* 134: 1779-85.
- Kant, A. 1996. –ndexes of Overall Diet Quality: A Review." *Journal of the American Dietetic Association* 96: 785-91.

- Kennedy, E., and L. Meyers. 2005. Detary Reference Intakes: Development and Uses for Assessment of Micronutrient Status of Women—A Global Perspective." *American Journal of Clinical Nutrition* 81: 1194S-97S.
- Krebs-Smith, S., H. Smiciklas-Wright, H. Guthrie, and J. Krebs-Smith. 1987. The Effects of Variety in Food Choices on Dietary Quality." *Journal of the American Dietetic Association* 87: 897-903.
- Lowik, M. R., K. F. Hulshof, and J. H. Brussaard. 1999. –Food-Based Dietary Guidelines: Some Assumptions Tested for the Netherlands." *British Journal of Nutrition* 81: S143-S149.
- Matthews, R. H., and Y. J. Garrison. 1975. *Food yields summarized by different stages on preparation*. Agriculture handbook n. 102. Washington, DC: USDA.
- Ogle, B. M., P. H. Hung, and H. T. Tuyet. 2001. Spinificance of Wild Vegetables in Micronutrient Intakes of Women in Vietnam: An Analysis of Food Variety." *Asia Pacific Journal of Clinical Nutrition* 10: 21-30.
- ORC Macro. DHS. <u>http://www.measuredhs.com/aboutsurveys/dhs/questionnaires.cfm</u> (accessed September 7, 2007).
- ---. 2003. DHS Burkina Faso. <u>http://www.measuredhs.com/aboutsurveys/search/metadata.cfm?surv_id=230&ctry_id=50&SrvyT</u> <u>p=custom</u> (Accessed November 1, 2004).
- Randall, E., M. Z. Nichaman, and C. F. Contant, Jr. (1985). -Diet diversity and Nutrient Intake." *Journal of the American Dietetic Association* 85: 830-36.
- Raper, N., B. Perloff, L. Ingwersen, L. Steinfeldt, and J. Anand. 2004. –An overview of USDA's Dietary Intake Data System." *Journal of Food Composition and Analysis* 17(3-4): 545-55.
- Ruel, M. T. 2003. Perationalizing Dietary Diversity: A Review of Measurement Issues and Research Priorities." *Journal of Nutrition* 133: 3911S-26S.
- Savy, M. Dietary Diversity Indices: Measure and Use among Women of Reproductive age in Burkina Faso. PhD Dissertation. University of Paris 6 (France).
- Torheim, L. E., I. Barikmo, C. L. Parr, A. Hatloy, F. Ouattara, and A. Oshaug. 2004. -Validation of Food Variety as an Indicator of Diet Quality Assessed with a Food Frequency Questionnaire for Western Mali." *European Journal of Clinical Nutrition* 57: 1283-91.
- Torheim, L. E., F. Ouattara, M. M. Diarra, F. D. Thiam, I. Barikmo, A. Hatloy, and A. Oshaug. 2004. –Nutrient Adequacy and Dietary Diversity in Rural Mali: Association and Determinants." *European Journal of Clinical Nutrition* 58: 594-604.
- WHO. 2003. -Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation." Technical Report Series n°916. Geneva: WHO.
- ---. 1995. -Physical status: the use and interpretation of anthropometry: Report of a WHO Expert Committee". Tech Rep Ser n°854. Geneva: WHO.
- WHO/FAO. 2004. -Vitamin and mineral requirements in human nutrition (second edition)". Geneva: WHO and Rome: FAO.

	n	Mean	SD	Median	Range
Age (year)	177	31.1	7.4	29.0	17.0-49.0
Height (cm)	161	163.1	6.2	163.0	150.0-182.0
Weight (kg)	160	61.7	11.5	60.4	38.2-102.1
BMI	160	23.2	4.0	22.7	16.1-37.1
Ever attended school	178	46.7			
% Lactating	178	20.5			
% Pregnant	178	7.6			
	n	Percent			
BMI < 16	0	0.0			
BMI 16-16.9	6	3.9			
BMI 17-18.49	8	5.3			
BMI 18.5-24.9	100	61.7			
BMI 25-29.9	39	24.5			
BMI ≥ 30	7	4.6			

Appendix 1. Tables and Figures, All Women

Table 4. Description of Osmula, All Manage, DO

Table 2. Energy and Macronutrient Intakes, All Women, R2

					Percent of
	Mean	SD	Median	Range	kcal
Energy (kcal)	2,316.0	876.4	2,188.8	714.2-5,242.1	
Protein (g)	61.5	31.4	54.0	15.8-257.1	10.8
Animal source (g)	14.9	25.6	8.6	0.0-242.7	2.7
Plant source (g)	46.6	22.3	43.6	7.7-123.7	8.1
Total carbohydrate (g)	386.5	165.8	356.6	90.5-904.4	66.2
Sugars (g)	74.1	68.5	58.2	5.0-394.8	12.9
Total fat (g)	55.8	34.3	49.7	5.1-234.0	22.0
Saturated fat (g)	_	_	_	-	-

Table 3a. Percent of Women who Consumed 6 Major Food Groups, All Women, R2

	≥1 g	≥ 15 g
All starchy staples	100.0	100.0
All legumes and nuts	84.5	61.2
All dairy	17.6	17.6
Other animal-source foods	93.9	71.8
Vitamin A-rich fruits and vegetables ^a	92.4	72.5
Other fruits and vegetables	95.7	93.2

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Table 3b. Percent of Women who Consumed 9 Sub-Food Groups, All Women, R2

	≥1g	≥ 15 g
All starchy staples	100.0	100.0
All legumes and nuts	84.5	61.2
All dairy	17.6	17.6
Organ meat	0.0	0.0
Eggs	1.4	0.5
Flesh foods and other miscellaneous small animal protein	93.4	70.9
Vitamin A-rich dark green leafy vegetables ^a	77.8	54.6
Other vitamin A-rich vegetables and fruits ^a	72.0	32.2
Other fruits and vegetables	95.7	93.2

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

	≥1g	≥ 15 g
All starchy staples	100.0	100.0
All legumes and nuts	84.5	61.2
All dairy	17.6	17.6
Organ meat	0.0	0.0
Eggs	1.4	0.5
Small fish eaten whole with bones	52.0	5.4
All other flesh foods and miscellaneous small animal protein	78.6	65.1
Vitamin A-rich dark green leafy vegetables ^a	77.8	54.6
Vitamin A-rich deep yellow/orange/red vegetables ^a	61.8	6.2
Vitamin C-rich vegetables ^b	94.2	90.0
Vitamin A-rich fruits ^a	28.9	27.6
Vitamin C-rich fruits ^b	12.1	6.6
All other fruits and vegetables	54.5	20.6

Table 3c. Percent of Women who Consumed 13 Sub-Food Groups, All Women, R2

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g raw, taking into account retention factors. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect. ^b Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g *raw, taking into account retention*

factors.

Table 3d. Percent of Women who Consumed 21 Sub-Food Groups, All Women, R2

	≥1 g	≥ 15 g
Grains and grain products	98.9	98.9
All other starchy staples	16.0	16.0
Cooked dry beans and peas	28.9	28.3
Soybeans and soy products	0.0	0.0
Nuts and seeds	76.5	40.5
Milk/yogurt	17.2	17.2
Cheese	0.5	0.5
Beef, pork, veal, lamb, goat, game meat	48.4	35.9
Organ meat	0.0	0.0
Chicken, duck, turkey, pigeon, guinea hen, game birds	1.3	1.3
Large whole fish/dried fish/shellfish and other seafood	56.2	36.2
Small fish eaten whole with bones	52.0	5.4
Insects, grubs, snakes, rodents and other small animal	0.0	0.0
Eggs	1.4	0.5
Vitamin A-rich dark green leafy vegetables ^a	77.8	54.6
Vitamin A-rich deep yellow/orange/red vegetables ^a	61.8	6.2
Vitamin C-rich vegetables ^b	94.2	90.0
All other vegetables	53.4	19.5
Vitamin A-rich fruits ^a	28.9	27.6
Vitamin C-rich fruits ^b	12.1	6.6
All other fruits	1.7	1.1

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g raw, taking into account retention factors. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect. ^b Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g *raw, taking into account retention*

factors.

		All (n = 178)					Among those who consume			
	Mean	Mean	Median	Median	Percent	Mean	Mean	Median	Median	
Food group	amount	energy	amount	energy	consuming	amount	energy	amount	energy	
	(g)	(kcal)	(g)	(kcal)		(g)	(kcal)	(g)	(kcal)	
All starchy staples	1,318.5	1,322.4	1,234.3	1,207.5	100.0	1,318.5	1,322.4	1,234.3	1,207.5	
All legumes and nuts	98.7	234.7	36.8	162.4	84.5	116.8	277.7	50.8	233.3	
All dairy	39.7	30.3	0.0	0.0	17.6	225.5	172.0	176.0	166.6	
Other animal source foods	57.7	129.9	28.0	66.2	93.9	61.5	138.4	31.0	71.7	
Vitamin A-rich fruits and vegetables ^a	145.5	93.2	59.4	30.3	92.4	157.4	100.8	67.5	34.4	
Other fruits and vegetables	113.0	50.4	88.6	36.2	95.7	118.0	52.6	89.4	38.2	

Table 4a. Summary of Food Group Intake (FGI-6), All Women, for All R2 Observation Days and for Days When the Food Was Consumed

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Table 4b. Summary of Food Group Intake (FGI-9), All Women, for All R2 Observation Days and For Days When the Food Was Consumed

		All (n = 178)					Among those who consume			
Food group	Mean amount	Mean energy	Median amount	Median energy	Percent consuming	Mean amount	Mean energy	Median amount	Median energy	
	(g)	(kcal)	(g)	(kcal)		(g)	(kcal)	(g)	(kcal)	
All starchy staples	1,318.5	1,322.4	1,234.3	1,207.5	100.0	1,318.5	1,322.4	1,234.3	1,207.5	
All legumes and nuts	98.7	234.7	36.8	162.4	84.5	116.8	277.7	50.8	233.3	
All dairy	39.7	30.3	0.0	0.0	17.6	225.5	172.0	176.0	166.6	
Organ meat	0.0	0.0	0.0	0.0	0.0	_	_	-	_	
Eggs	0.6	0.9	0.0	0.0	1.4	43.6	62.9	9.2	14.5	
Flesh foods and other miscellaneous small animal protein	57.1	129.1	28.0	64.8	93.4	61.1	138.1	31.0	68.2	
Vitamin A-rich dark green leafy vegetables ^a	48.9	23.2	18.6	6.6	77.8	62.9	29.9	33.0	14.4	
Other vitamin A-rich vegetables and fruits ^a	96.6	70.0	4.1	4.9	72.0	134.1	97.1	10.9	13.6	
Other fruits and vegetables	113.0	50.4	88.6	36.2	95.7	118.0	52.6	89.4	38.2	

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

			All (n = 178	3)		Am	me		
Food group	Mean amount	Mean energy	Median amount	Median energy	Percent consuming	Mean amount	Mean energy	Median amount	Median energy
· ·	(g)	(kcal)	(g)	(kcal)		(g)	(kcal)	(g)	(kcal)
All starchy staples	1,318.5	1,322.4	1,234.3	1,207.5	100.0	1,318.5	1,322.4	1,234.3	1,207.5
All legumes and nuts	98.7	234.7	36.8	162.4	84.5	116.8	277.7	50.8	233.3
All dairy	39.7	30.3	0.0	0.0	17.6	225.5	172.0	176.0	166.6
Organ meat	0.0	0.0	0.0	0.0	0.0	_	_	-	_
Eggs	0.6	0.9	0.0	0.0	1.4	43.6	62.9	9.2	14.5
Small fish eaten whole with bones	3.7	9.6	1.4	3.5	52.0	7.0	18.3	5.0	13.0
All other flesh foods and miscellaneous small animal protein	53.4	119.5	24.6	55.9	78.6	67.9	151.9	36.0	73.2
Vitamin A-rich dark green leafy vegetables ^a	48.9	23.2	18.6	6.6	77.8	62.9	29.9	33.0	14.4
Vitamin A-rich deep yellow/orange/red vegetables ^a	4.5	4.5	2.1	2.6	61.8	7.1	7.1	4.1	4.8
Vitamin C-rich vegetables ^b	94.4	35.4	76.2	24.2	94.2	100.3	37.6	80.2	26.4
Vitamin A-rich fruits ^a	92.1	65.5	0.0	0.0	28.9	318.5	226.3	236.7	172.8
Vitamin C-rich fruits ^b	6.5	5.2	0.0	0.0	12.1	53.8	42.7	18.0	21.1
All other fruits and vegetables	12.0	9.8	4.1	1.9	54.5	22.1	17.9	9.9	9.7

Table 4c. Summary of Food Group Intake (FGI-13), All Women, for All R2 Observation Days and for Days When the Food Was Consumed

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g raw, taking into account retention factors. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

^b Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g raw, taking into account retention factors.

	<i>,,</i>	,	All (n = 178	3)	2	Am	ong those	who consu	me
	Mean	Mean	Median	Median	Percent	Mean	Mean	Median	Median
Food group	amount	energy	amount	energy	consuming	amount	energy	amount	energy
Opering and specing and depts	(g)	(kcal)	(g)	(kcal)	00.0	(g)	(kcal)	(g)	(kcal)
Grains and grain products	1,242.8	1,245.6	1,143.9	1,150.1	98.9	1,256.6	1,259.4	1,154.2	1,156.9
All other starchy staples	75.6	76.8	0.0	0.0	16.0	473.6	480.9	211.2	425.9
Cooked dry beans and peas	76.0	107.3	0.0	0.0	28.9	262.7	371.1	223.6	315.9
Soybeans and soy products	0.0	0.0	0.0	0.0	0.0				
Nuts and seeds	22.7	127.3	7.8	37.5	76.5	29.7	166.5	17.5	99.6
Milk/yogurt	39.6	30.0	0.0	0.0	17.2	231.1	175.1	213.1	166.6
Cheese	0.1	0.2	0.0	0.0	0.5	15.7	54.7	15.7	54.7
Beef, pork, veal, lamb, goat, game meat	23.7	67.0	0.0	0.0	48.4	48.9	138.6	24.5	64.8
Organ meat	0.0	0.0	0.0	0.0	0.0				
Chicken, duck, turkey, pigeon, guinea hen, game birds	5.5	10.7	0.0	0.0	1.3	428.6	839.5	15.9	21.9
Large whole fish/dried fish/shellfish and other seafood	24.3	41.7	5.7	7.1	56.2	43.2	74.3	21.6	34.8
Small fish eaten whole with bones	3.7	9.6	1.4	3.5	52.0	7.0	18.3	5.0	13.0
Insects, grubs, snakes, rodents and other small animal	0.0	0.0	0.0	0.0	0.0	-	-	-	-
Eggs	0.6	0.9	0.0	0.0	1.4	43.6	62.9	9.2	14.5
Vitamin A-rich dark green leafy vegetables ^a	48.9	23.2	18.6	6.6	77.8	62.9	29.9	33.0	14.4
Vitamin A-rich deep yellow/orange/red vegetables ^a	4.5	4.5	2.1	2.6	61.8	7.1	7.1	4.1	4.8
Vitamin C-rich vegetables ^b	94.4	35.4	76.2	24.2	94.2	100.3	37.6	80.2	26.4
All other vegetables	11.0	8.1	3.3	1.9	53.4	20.6	15.2	9.9	9.0
Vitamin A-rich fruits ^a	92.1	65.5	0.0	0.0	28.9	318.5	226.3	236.7	172.8
Vitamin C-rich fruits ^b	6.5	5.2	0.0	0.0	12.1	53.8	42.7	18.0	21.1
All other fruits	1.0	1.7	0.0	0.0	1.7	59.8	96.0	51.0	62.2

Table 4d. Summary of Food Group Intake (FGI-21), All Women, for All R2 Observation Days and for Days When the Food Was Consumed

^a Vitamin A-rich fruits and vegetables are defined as those with >120 RE/100g raw, taking into account retention factors. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect. ^b Vitamin C-rich fruits and vegetables are defined as those with >9 mg/100g *raw, taking into account retention factors*.

	Number of food groups				
Indicator	and level	Mean	SD	Median	Range
FGI-6	6 major food groups	4.8	0.7	5.0	2-6
FGI-6R ^ª	6 major food groups	4.2	0.9	4.0	2-6
FGI-9	9 food sub-groups	5.4	1.0	6.0	2-7
FGI-9R ^a	9 food sub-groups	4.3	1.1	4.0	2-7
FGI-13	13 food sub-groups	6.6	1.6	7.0	2-10
FGI-13R ^a	13 food sub-groups	4.6	1.2	5.0	2-8
FGI-21	21 food sub-groups	7.3	1.8	8.0	2-11
FGI-21R ^a	21 food sub-groups	4.9	1.4	5.0	2-9

Table 5. Diversity Scores for Various Diversity Indicators, All Women, R2

^a "R" indicates that at least 15 g must be consumed in order for the food group/sub-group to --ount" in the score.

Table 6. Percent of Observation Days at Each Food Group Diversity Score, All Women, R2

Number				Diversity	/ indicators			
of food groups eaten	FGI-6	FGI-6R	FGI-9	FGI-9R	FGI-13	FGI-13R	FGI-21	FGI-21R
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.6	4.6	0.6	3.9	0.6	3.5	0.6	3.6
2 3	3.3	19.1	2.6	18.6	2.2	18.2	0.9	12.6
4	18.6	35.9	14.8	35.0	8.7	26.1	8.2	26.6
5	66.2	36.2	26.6	29.1	10.4	30.5	7.3	23.1
6	11.2	4.2	46.2	12.4	19.1	16.1	12.2	23.6
6 7			9.1	0.9	27.3	5.3	18.2	6.8
8 9			0.0	0.0	23.2	0.5	28.8	3.2
9			0.0	0.0	7.7	0.0	15.1	0.5
10					0.9	0.0	8.1	0.0
11					0.0	0.0	0.5	0.0
12					0.0	0.0	0.0	0.0
13					0.0	0.0	0.0	0.0
14							0.0	0.0
15							0.0	0.0
16							0.0	0.0
17							0.0	0.0
18							0.0	0.0
19							0.0	0.0
20							0.0	0.0
21							0.0	0.0

		Nu	mber of food	groups eate	n	
	1	2	3	4	5	6
Percent (number) ^a of observation days	0.0	0.6	3.3	18.6	66.2	11.2
at each diversity score	(0)	(1)	(6)	(34)	(116)	(21)
Food groups	Percent of	observation	days on whic	h each food	group was c	onsumed
All starchy staples	_	100.0	100.0	100.0	100.0	100.0
All legumes and nuts	_	100.0	72.2	46.6	93.0	100.0
All dairy	_	0.0	0.0	5.9	8.0	100.0
Other animal source foods	_	0.0	0.0	88.2	100.0	100.0
Vitamin A-rich fruits and vegetables ^b	_	0.0	66.7	72.1	99.0	100.0
Other fruits and vegetables	_	0.0	61.1	87.3	100.0	100.0

Table 7a. Percent of Observation Days on Which Different Food Groups were Consumed, by Food Group Diversity Score, All Women, R2 (FGI-6 - 1 g Minimum)

^a Percents are weighted according to the sample design; however, the number of observations is unweighted. ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Table 7b. Percent of Observation Days on Which Different Food Groups were Consumed, by Food Group Diversity Score, All Women, R2 (FGI-6R - 15 g Minimum)

		Nu	mber of food	groups eate	n	
	1	2	3	4	5	6
Percent (number) ^a of observation days	0.0	4.6	19.1	35.9	36.2	4.2
at each diversity score	(0)	(8)	(33)	(64)	(65)	(8)
Food groups	Percent of	observation	days on whic	ch each food	group was o	onsumed
All starchy staples	_	100.0	100.0	100.0	100.0	100.0
All legumes and nuts	_	24.0	45.0	45.7	85.4	100.0
All dairy	_	0.0	0.0	14.7	22.4	100.0
Other animal source foods	_	0.0	30.1	74.9	96.5	100.0
Vitamin A-rich fruits and vegetables ^b	_	28.0	43.1	66.0	97.0	100.0
Other fruits and vegetables	_	48.0	81.8	98.7	98.7	100.0

^a Percents are weighted according to the sample design; however, the number of observations is unweighted. ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

				Number	of food grou	ups eaten			
-	1	2	3	4	5	6	7	8	9
Percent (number) ^a of observation days at each	0.0	0.6	2.6	14.8	26.6	46.2	9.1	0.0	0.0
diversity score	(0)	(1)	(5)	(26)	(46)	(82)	(18)	(0)	(0)
Food groups		Percer	t of observa	ation days o	on which ea	ch food gro	oup was con	sumed	
All starchy staples	_	100.0	100.0	100.0	100.0	100.0	100.0	_	_
All legumes and nuts	_	100.0	65.5	61.7	76.4	94.3	100.0	_	_
All dairy	_	0.0	0.0	7.4	9.9	12.3	90.0	_	_
Organ meat	_	0.0	0.0	0.0	0.0	0.0	0.0	_	_
Eggs	_	0.0	0.0	0.0	1.7	0.0	10.0	_	-
Flesh foods and other miscellaneous small animal protein	-	0.0	0.0	80.9	98.3	100.0	100.0	_	_
Vitamin A-rich dark green leafy vegetables ^b	_	0.0	41.4	35.2	65.1	97.6	100.0	_	_
Other vitamin A-rich vegetables and fruits ^b	_	0.0	17.2	30.9	51.0	95.8	100.0	_	_
Other fruits and vegetables	_	0.0	75.9	84.0	97.6	100.0	100.0	_	_

Table 7c. Percent of Observation Days on Which Different Food Groups were Consumed, by Food Group Diversity Score, All Women, R2 (FGI-9 - 1 g Minimum)

^a Percents are weighted according to the sample design; however, the number of observations is unweighted. ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

				Number	of food grou	ups eaten			
	1	2	3	4	5	6	7	8	9
Percent (number) ^a of observation days at each	0.0	3.9	18.6	35.0	29.1	12.4	0.9	0.0	0.0
diversity score	(0)	(7)	(32)	(62)	(53)	(22)	(2)	(0)	(0)
Food groups		Percen	t of observa	ation days o	on which ea	ch food gro	up was con	sumed	
All starchy staples	_	100.0	100.0	100.0	100.0	100.0	100.0	_	_
All legumes and nuts	_	27.9	40.2	51.8	78.1	87.5	100.0	_	_
All dairy	_	0.0	0.0	15.1	18.8	47.8	100.0	_	_
Organ meat	_	0.0	0.0	0.0	0.0	0.0	0.0	_	_
Eggs	_	0.0	0.0	0.0	1.6	0.0	0.0	_	_
Flesh foods and other miscellaneous small animal protein	_	0.0	34.3	72.9	90.3	94.9	100.0	_	_
Vitamin A-rich dark green leafy vegetables ^b	_	16.3	26.5	43.2	74.3	91.2	100.0	_	_
Other vitamin A-rich vegetables and fruits ^b	_	0.0	15.2	20.1	38.6	82.4	100.0	_	_
Other fruits and vegetables	_	55.8	83.8	96.9	98.4	96.3	100.0	_	_

Table 7d. Percent of Observation Days on Which Different Food Groups were Consumed, by Food Group Diversity Score, All Women, R2 (FGI-9R - 15 g Minimum)

^a Percents are weighted according to the sample design; however, the number of observations is unweighted. ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

					Nu	mber of	food gro	ups eate	n				
	1	2	3	4	5	6	7	8	9	10	11	12	13
Percent (number) of observation days at	0.0	0.6	2.2	8.7	10.4	19.1	27.3	23.2	7.7	0.9	0	0	0
each diversity score	(0)	(1)	(4)	(15)	(20)	(33)	(49)	(40)	(14)	(2)	(0)	(0)	(0)
Food groups			Percer	t of obs	ervation	days on	which ea	ach food	group w	as consi	umed		
All starchy staples	_	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	_	_	_
All legumes and nuts	_	100.0	79.2	77.9	43.9	75.6	95.0	94.5	100.0	100.0	_	_	_
All dairy	_	0.0	0.0	7.4	13.2	17.2	19.4	17.7	32.1	50.0	_	_	_
Organ meat	_	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_	_	_
Eggs	_	0.0	0.0	0.0	4.4	0.0	1.7	0.0	0.0	50.0	_	_	_
Small fish eaten whole with bones	_	0.0	0.0	36.8	43.0	28.2	56.9	68.9	85.7	100.0	_	_	_
All other flesh foods and miscellaneous small animal protein	-	0.0	0.0	30.5	54.4	83.3	84.9	100.0	100.0	50.0	_	_	_
Vitamin A-rich dark green leafy vegetables ^a	_	0.0	50.0	47.4	44.7	68.4	89.6	94.5	100.0	100.0	_	_	_
Vitamin A-rich deep yellow/orange/red vegetables ^a	_	0.0	0.0	14.7	45.6	52.6	58.2	91.7	100.0	100.0	_	_	_
Vitamin C-rich vegetables ^b	_	0.0	70.8	65.3	93.9	100.0	96.7	100.0	100.0	100.0	_	_	_
Vitamin A-rich fruits ^a	_	0.0	0.0	12.6	25.4	26.3	21.1	40.2	54.8	100.0	_	_	_
Vitamin C-rich fruits ^b	_	0.0	0.0	0.0	0.0	13.4	14.4	9.4	39.3	50.0	_	_	_
All other fruits and vegetables	_	0.0	0.0	7.4	31.6	34.9	62.2	83.1	88.1	100.0	_	_	_

Table 7e. Percent of Observation Days on Which Different Food Groups were Consumed, by Food Group Diversity Score, All Women, R2 (FGI-13 - 1 g Minimum)

^a Percents are weighted according to the sample design; however, the number of observations is unweighted. ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect. ^c Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g *raw, taking into account retention factors*.

					Nu	mber of	food gro	ups eate	n				
	1	2	3	4	5	6	7	8	9	10	11	12	13
Percent (number) of observation days at	0.0	3.5	18.2	26.1	30.5	16.1	5.3	0.5	0.0	0.0	0	0	0
each diversity score	(0)	(6)	(31)	(48)	(54)	(28)	(10)	(1)	(0)	(0)	(0)	(0)	(0)
Food groups			Percer	t of obse	ervation	days on	which ea	ach food	group w	as cons	umed		
All starchy staples	_	100.0	100.0	100.0	100.0	100.0	100.0	100.0	_	_	_	_	_
All legumes and nuts	_	31.6	41.2	53.5	64.7	85.2	91.4	100.0	_	_	_	_	_
All dairy	_	0.0	3.5	11.2	18.0	39.2	34.5	100.0	_	_	_	_	_
Organ meat	_	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_	_	_	_	_
Eggs	_	0.0	0.0	0.0	1.5	0.0	0.0	0.0	_	_	_	_	_
Small fish eaten whole with bones	_	0.0	0.0	9.1	2.1	14.8	0.0	0.0	_	_	_	_	_
All other flesh foods and miscellaneous small animal protein	-	0.0	29.1	54.2	81.7	96.0	91.4	100.0	-	-	_	_	-
Vitamin A-rich dark green leafy vegetables ^a	_	18.4	30.7	49.3	62.9	68.8	91.4	100.0	_	_	_	_	_
Vitamin A-rich deep yellow/orange/red vegetables ^a	-	0.0	0.0	1.7	9.6	10.8	20.7	0.0	-	-	-	-	-
Vitamin C-rich vegetables ^b	_	31.6	76.4	94.1	97.0	97.2	91.4	100.0	_	_	_	_	_
Vitamin A-rich fruits ^a	_	0.0	13.1	16.8	25.7	47.7	91.4	100.0	_	_	_	_	_
Vitamin C-rich fruits ^b	_	0.0	3.5	2.4	7.2	6.8	37.9	0.0	_	_	_	_	_
All other fruits and vegetables	_	18.4	2.5	7.7	29.6	33.5	50.0	100.0	_	_	_	_	_

Table 7f. Percent of Observation Days on Which Different Food Groups were Consumed, by Food Group Diversity Score, All Women, R2 (FGI-13R - 15 g Minimum)

^a Percents are weighted according to the sample design; however, the number of observations is unweighted. ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect. ^c Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g *raw, taking into account retention factors*.

Number of food groups eaten 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Percent (number) of observation days 0.0 0.6 0.9 8.2 7.3 12.2 18.2 28.8 15.1 8.1 0.5 0.0 0 0 0 0 0 0 0 n 0 at each diversity score (0)(1)(2)(14)(22) (31)(50) (28)(15)(0) (0)(0)(0)(0)(0)(0) (0) (0)(0)(14) (1)Food groups Percent of observation days on which each food group was consumed Grains and grain products 100.0 100.0 100.0 91.3 100.0 97.5 100.0 100.0 100.0 100.0 All other starchy staples 0.0 0.0 0.0 15.0 7.5 17.1 13.6 34.3 21.3 0.0 28.1 Cooked dry beans and peas 100.0 50.0 47.8 8.8 24.6 24.7 22.9 56.2 0.0 _ Soybeans and soy products 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 _ Nuts and seeds 0.0 0.0 52.2 51.3 47.8 82.9 82.6 100.0 100.0 100.0 Milk/yogurt 0.0 0.0 7.8 6.3 20.1 12.1 25.6 16.3 13.5 100.0 _ Cheese 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 _ Beef, pork, veal, lamb, goat, game 0.0 0.0 0.0 27.5 34.3 47.7 57.9 65.7 78.7 100.0 meat 0.0 0.0 0.0 0.0 0.0 Organ meat 0.0 0.0 0.0 0.0 0.0 _ Chicken, duck, turkey, pigeon, guinea 0.0 0.0 8.8 0.0 0.0 2.2 0.0 0.0 0.0 0.0 hen, game birds Large whole fish/dried fish/shellfish 0.0 0.0 18.9 25.0 52.2 46.7 65.2 81.3 78.7 100.0 and other seafood Small fish eaten whole with bones 0.0 0.0 35.0 44.7 56.6 66.3 80.9 100.0 31.1 44.0 Insects, grubs, snakes, rodents and 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 other small animal Eggs 0.0 0.0 6.3 0.0 2.5 0.0 0.0 5.6 0.0 0.0 Vitamin A-rich dark green leafy 0.0 50.0 57.8 51.3 43.3 82.4 88.0 97.0 100.0 100.0 vegetables ^a Vitamin A-rich deep yellow/orange/red 0.0 0.0 7.8 46.3 64.2 38.7 75.3 91.6 84.3 100.0 vegetables ^a Vitamin C-rich vegetables ^b 100.0 85.0 100.0 100.0 96.8 100.0 100.0 100.0 0.0 61.1 _ All other vegetables 0.0 0.0 7.8 21.3 35.1 49.7 64.2 71.1 100.0 100.0 Vitamin A-rich fruits ^a 28.6 0.0 0.0 7.8 21.3 21.6 32.6 31.9 51.7 100.0 _ _ Vitamin C-rich fruits ^b 0.0 0.0 0.0 0.0 5.2 17.6 11.4 21.7 21.3 0.0 _ All other fruits 0.0 0.0 0.0 0.0 3.5 0.0 7.9 0.0 _ 0.0 1.6 _ _

Table 7g. Percent of Observation Days on Which Different Food Groups were Consumed, by Food Group Diversity Score, All Women, R2 (FGI-21 - 1 g Minimum)

^a Percents are weighted according to the sample design; however, the number of observations is unweighted.

^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

^c Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g raw, taking into account retention factors.

Number of food groups eaten 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Percent (number) of observation days 0.0 3.6 12.6 26.6 23.1 23.6 6.8 3.2 0.5 0.0 0.0 0.0 0 0 0 0 0 0 0 n 0 at each diversity score (0)(6)(22)(47) (41) (13)(5) (1) (0)(0)(0) (0)(0)(0)(0)(0)(0) (0) (0)(0)(43) Food groups Percent of observation days on which each food group was consumed Grains and grain products 100.0 100.0 97.6 98.0 100.0 100.0 100.0 100.0 _ All other starchy staples 0.0 3.6 15.5 12.6 19.7 28.0 60.0 0.0 30.0 29.3 Cooked dry beans and peas 34.1 26.1 20.6 34.7 60.0 0.0 _ Soybeans and soy products 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 _ Nuts and seeds 8.7 0.0 22.7 60.5 49.8 58.7 100.0 100.0 Milk/yogurt 17.5 0.0 9.3 10.3 31.7 54.7 0.0 100.0 _ Cheese 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 _ Beef, pork, veal, lamb, goat, game 0.0 12.3 17.2 50.2 52.1 52.0 60.0 100.0 meat 0.0 0.0 0.0 0.0 Organ meat 0.0 0.0 0.0 0.0 _ Chicken, duck, turkey, pigeon, guinea 0.0 2.4 2.7 0.0 0.0 0.0 0.0 0.0 hen, game birds Large whole fish/dried fish/shellfish 0.0 3.6 32.3 30.4 54.1 64.0 80.0 100.0 and other seafood Small fish eaten whole with bones 0.0 0.0 6.5 2.8 10.0 0.0 20.0 0.0 Insects, grubs, snakes, rodents and 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 other small animal Eggs 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 Vitamin A-rich dark green leafy 17.5 39.1 45.7 59.7 64.5 70.7 80.0 100.0 vegetables ^a Vitamin A-rich deep yellow/orange/red 0.0 0.0 1.7 4.7 13.1 13.3 20.0 0.0 vegetables ^a Vitamin C-rich vegetables b 93.5 96.0 94.2 93.3 100.0 100.0 17.5 79.7 All other vegetables 17.5 3.6 8.2 26.9 22.0 45.3 40.0 100.0 _ Vitamin A-rich fruits ^a 0.0 10.1 17.2 19.8 46.3 56.0 60.0 100.0 _ _ Vitamin C-rich fruits ^b 0.0 5.1 4.1 5.5 6.6 20.0 20.0 0.0 _ _ _ All other fruits 0.0 0.0 0.0 0.0 1.9 9.3 0.0 _ 0.0 _ _

Table 7h. Percent of Observation Days on Which Different Food Groups were Consumed, by Food Group Diversity Score, All Women, R2 (FGI-21R - 15 g Minimum)

^a Percents are weighted according to the sample design; however, the number of observations is unweighted.

^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g raw, taking into account retention factors. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

^c Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g *raw, taking into account retention factors*.

								Lambda (Box-Cox
Nutrient	Mean	SD	Median	EAR ^b	SD ^b	PA (Mean)	PA (Median)	transformation) ^c
Energy	2,315.99	876.45	2,188.79					
Protein (All Sources) (% of kcal)	10.81	3.78	10.30					
Protein from animal sources (% of kcal)	2.68	3.89	1.62					
Total carbohydrate (% of kcal)	66.23	11.23	67.68					
Sugars (% of kcal)	12.90	10.37	11.08					
Total fat (% of kcal)	22.03	10.47	21.09					
Saturated fat (% of kcal)	-	-	_					
Thiamin (mg/d)	1.06	0.49	0.98	0.9	0.09	0.44	0.38	0.236
Riboflavin (mg/d)	0.78	0.46	0.67	0.9	0.09	0.13	0.00	0.033
Niacin (mg/d)	9.84	5.72	8.38	11	1.65	0.20	0.06	0.110
Vitamin B6 (mg/d)	1.57	0.86	1.35	1.1	0.11	0.60	0.65	0.106
Folate (µg/d)	255.79	185.31	201.55	320	32	0.12	0.00	0.170
Vitamin B12 (µg/d)	1.00	1.78	0.41	2.0	0.2	0.04	0.00	0.146
Vitamin C (mg/d)	85.65	98.92	53.24	30	3.0	0.68	0.99	0.182
Vitamin A (RE/d)	795.17	978.59	424.64	270	54	0.67	0.97	0.101
Calcium (mg/d)	544.21	432.93	410.61	d	d	0.31	0.25	0.062
Iron (mg/d)	24.72	15.03	21.40	See tables A6-2	& A6-3	0.26	0.15	0.106
Zinc (mg/d)	9.83	4.61	9.05	15% bioavail: 6.67	1.67	0.71	0.94	0.291
MPA across 11 micronutrients	0.38	0.19	0.34					

Table 8. Mean and Median Nutrient Intake and PA: Lowest Bioavailability Level for Iron and Zinc, All Women^a

^a Mean and median nutrient intakes are for second observation day; PA are based on estimated usual intake, calculated using repeat observations for a subset of the sample.

^b EAR and SD are presented for the predominant physiological group, i.e., NPNL women (19-65 years); however, the sample also include pregnant women (7.6 percent), lactating women (20.5 percent) and adolescent girls (2.3 percent). See table A6-1 for sources of data. ^c This documents the transformation parameters selected for each nutrient. The power transformations result in approximately normal distributions.

^d There is no EAR and no SD for calcium; 1000 mg is the Adeguate Intake (AI).

Food groups (%)	Energy	Protein	СНО	Total fat	Thiamin	Riboflavin	Niacin	Vitamin B6	Folate	Vitamin B12	Vitamin C	Vitamin A	Calcium	Iron	Zinc
All starchy staples	56.3	47.9	73.6	12.0	53.8	30.5	32.3	45.3	27.8	0.0	9.2	3.3	14.9	37.9	61.6
All legumes and nuts	10.3	19.6	6.0	21.5	22.0	14.2	25.8	7.6	29.1	0.0	3.2	1.8	11.4	18.2	17.3
All dairy	1.5	2.4	1.2	2.5	1.7	5.8	1.8	1.6	1.5	9.2	1.6	2.5	7.0	1.2	2.2
Other animal source foods	5.8	19.4	0.0	15.0	5.1	8.4	12.5	7.5	2.2	74.0	0.3	2.0	13.3	6.5	8.9
Vitamin A-rich fruits/vegetables ^b	4.2	5.5	5.1	1.9	7.8	24.8	12.5	24.3	21.0	0.0	36.1	70.3	33.5	21.3	4.6
Other fruits and vegetables	2.4	3.3	2.6	1.6	6.8	10.3	10.4	10.3	13.1	0.0	47.8	18.6	16.9	12.7	4.4

Table 9a. Percent Contribution of Food Groups (FGI-6) to Intake of Energy, Protein and Nutrients, All Women, R2 ^a

^a Percents may not sum to 100 due to nutrient contributions from foods not included in any of the groups comprising the diversity indicators (e.g., fats, sweets, alcohol) ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Table 9b. Percent Contribution of Food Groups (FGI-9) to Intake of Energy, Protein and Nutrients, All Women, R2 ^a

Food groups (%)	Energy	Protein	СНО	Total fat	Thiamin	Riboflavin	Niacin	Vitamin B6	Folate	Vitamin B12	Vitamin C	Vitamin A	Calcium	Iron	Zinc
All starchy staples	56.3	47.9	73.6	12.0	53.8	30.5	32.3	45.3	27.8	0.0	9.2	3.3	14.9	37.9	61.6
All legumes and nuts	10.3	19.6	6.0	21.5	22.0	14.2	25.8	7.6	29.1	0.0	3.2	1.8	11.4	18.2	17.3
All dairy	1.5	2.4	1.2	2.5	1.7	5.8	1.8	1.6	1.5	9.2	1.6	2.5	7.0	1.2	2.2
Organ meat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Eggs	0.1	0.2	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.7	0.0	0.1	0.0	0.0	0.1
Flesh foods and other miscellaneous small animal protein	5.7	19.3	0.0	14.9	5.1	8.3	12.5	7.5	2.1	73.4	0.3	1.9	13.3	6.4	8.8
Vitamin A-rich dark green leafy vegetables	1.1	4.1	1.1	0.8	3.9	18.0	6.5	16.0	16.6	0.0	15.7	43.6	30.2	15.3	3.1
Other vitamin A-rich vegetables and fruits ^b	3.0	1.4	4.0	1.1	3.9	6.8	6.0	8.3	4.3	0.0	20.5	26.7	3.3	6.0	1.5
Other fruits and vegetables	2.4	3.3	2.6	1.6	6.8	10.3	10.4	10.3	13.1	0.0	47.8	18.6	16.9	12.7	4.4

^a Percents may not sum to 100 due to nutrient contributions from foods not included in any of the groups comprising the diversity indicators (e.g., fats, sweets, alcohol) ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Food groups (%)	Energy	Protein	СНО	Total fat	Thiamin	Riboflavin	Niacin	Vitamin B6	Folate	Vitamin B12	Vitamin C	Vitamin A	Calcium	Iron	Zinc
All starchy staples	56.3	47.9	73.6	12.0	53.8	30.5	32.3	45.3	27.8	0.0	9.2	3.3	14.9	37.9	61.6
All legumes and nuts	10.3	19.6	6.0	21.5	22.0	14.2	25.8	7.6	29.1	0.0	3.2	1.8	11.4	18.2	17.3
All dairy	1.5	2.4	1.2	2.5	1.7	5.8	1.8	1.6	1.5	9.2	1.6	2.5	7.0	1.2	2.2
Organ meat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Eggs	0.1	0.2	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.7	0.0	0.1	0.0	0.0	0.1
Small fish eaten whole w/bones	0.4	3.1	0.0	0.6	0.2	0.3	1.4	1.1	0.3	20.5	0.0	0.0	7.6	0.4	0.3
All other flesh foods misc. small animal protein Vitamin A-rich dark green leafy	5.3	16.2	0.0	14.2	4.9	8.1	11.1	6.4	1.9	52.9	0.3	1.9	5.7	6.0	8.5
vegetables ^b	1.1	4.1	1.1	0.8	3.9	18.0	6.5	16.0	16.6	0.0	15.7	43.6	30.2	15.3	3.1
Vitamin A-rich deep yellow/orange/red vegetables ^b	0.4	0.4	0.3	0.7	1.0	0.9	1.7	1.5	1.1	0.0	0.8	6.3	0.5	0.9	0.4
Vitamin C-rich vegetables ^c	1.7	2.3	1.8	1.2	5.0	6.5	6.6	7.1	9.3	0.0	43.8	16.6	11.0	4.3	2.6
Vitamin A-rich fruits ^b	2.6	1.1	3.7	0.4	2.9	5.9	4.3	6.8	3.2	0.0	19.7	20.4	2.7	5.0	1.1
Vitamin C-rich fruits ^c	0.3	0.1	0.4	0.1	0.5	0.4	0.3	1.2	0.8	0.0	2.5	0.1	0.5	0.2	0.2
All other fruits and vegetables	0.4	0.9	0.4	0.3	1.4	3.4	3.5	2.0	3.0	0.0	1.4	1.8	5.4	8.2	1.6

Table 9c. Percent Contribution of Food Groups (FGI-13) to Intake of Energy, Protein and Nutrients, All Women, R2^a

^a Percents may not sum to 100 due to nutrient contributions from foods not included in any of the groups comprising the diversity indicators (e.g., fats, sweets, alcohol) ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

^c Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g raw, taking into account retention factors.

Food groups (%)	Energy	Protein	СНО	Total fat	Thiamin	Riboflavin	Niacin	Vitamin B6	Folate	Vitamin B12	Vitamin C	Vitamin A	Calcium	Iron	Zinc
Grains and grain products	53.2	46.1	68.9	11.5	48.6	28.1	29.6	38.9	22.9	0.0	1.1	1.9	9.2	35.0	58.5
All other starchy staples	3.1	1.8	4.7	0.4	5.2	2.4	2.7	6.3	4.9	0.0	8.1	1.4	5.6	3.0	3.1
Cooked dry beans and peas	4.6	10.7	5.0	1.0	13.4	6.1	6.5	3.9	17.8	0.0	2.8	1.3	6.1	7.0	9.4
Soybeans and soy products	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nuts and seeds	5.7	9.0	1.0	20.4	8.5	8.1	19.3	3.7	11.4	0.0	0.4	0.5	5.3	11.2	7.9
Milk/yogurt	1.5	2.4	1.2	2.4	1.7	5.8	1.8	1.6	1.5	9.2	1.6	2.3	6.9	1.2	2.2
Cheese	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.1	0.0	0.0
Beef, pork, veal, lamb, goat, game meat	3.0	7.5	0.0	8.5	3.1	6.1	7.4	3.3	1.0	35.3	0.1	0.5	1.1	3.8	6.4
Organ meat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chicken, duck, turkey, pigeon, guinea hen, game birds	0.4	0.6	0.0	0.6	0.3	0.6	0.6	0.4	0.0	0.9	0.0	0.6	0.1	0.4	0.5
Large whole fish/dried fish/shellfish, other seafood	1.8	8.1	0.0	5.1	1.4	1.4	3.1	2.7	0.9	16.8	0.2	0.8	4.4	1.8	1.6
Small fish eaten whole w/bones	0.4	3.1	0.0	0.6	0.2	0.3	1.4	1.1	0.3	20.5	0.0	0.0	7.6	0.4	0.3
Insects, grubs, snakes, rodents and other small animal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Eggs	0.1	0.2	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.7	0.0	0.1	0.0	0.0	0.1
Vitamin A-rich dark green leafy vegetables ^b	1.1	4.1	1.1	0.8	3.9	18.0	6.5	16.0	16.6	0.0	15.7	43.6	30.2	15.3	3.1
Vitamin A-rich deep yellow/orange/red vegetables ^b	0.4	0.4	0.3	0.7	1.0	0.9	1.7	1.5	1.1	0.0	0.8	6.3	0.5	0.9	0.4
Vitamin C-rich vegetables ^c	1.7	2.3	1.8	1.2	5.0	6.5	6.6	7.1	9.3	0.0	43.8	16.6	11.0	4.3	2.6
All other vegetables	0.3	0.9	0.3	0.2	1.3	3.3	3.4	1.9	2.9	0.0	1.4	1.8	5.3	8.2	1.5
Vitamin A-rich fruits ^b	2.6	1.1	3.7	0.4	2.9	5.9	4.3	6.8	3.2	0.0	19.7	20.4	2.7	5.0	1.1
Vitamin C-rich fruits ^c	0.3	0.1	0.4	0.1	0.5	0.4	0.3	1.2	0.8	0.0	2.5	0.1	0.5	0.2	0.2
All other fruits	0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 9d. Percent Contribution of Food Groups (FGI-21) to Intake of Energy, Protein and Nutrients, All Women, R2 ^a

^a Percents may not sum to 100 due to nutrient contributions from foods not included in any of the groups comprising the diversity indicators (e.g., fats, sweets, alcohol) ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

^c Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g raw, taking into account retention factors.

	FG	GI-6	FG	I-6R	FG	il-9	FG	I-9R	FG	il-13	FG	I-13R	FG	GI-21	FG	il-21R
	Not		Not						Not		Not		Not		Not	
	control	Control		Control	Not control		Not control		control	Control		Control	control	Control	control	Control
	ling for	ling for	ling for	ling for	ling for	ling for	ling for	ling for	ling for	ling for	ling for	ling for				
Nutrients	energy	energy	energy	energy	energy	energy	energy	energy	energy	energy	energy	energy	energy	energy	energy	energy
Total energy	0.138		0.185 *		0.197 **		0.215**		0.222 **		0.243 **		0.251 ***		0.276 ***	
Thiamin	0.113	0.012	0.253 ***	0.176*	0.150*	0.001	0.262 ***	0.155*	0.149*	-0.031	0.281 ***	0.152*	0.216 **	0.040	0.316 ***	0.170 *
Riboflavin	0.251 ***	0.212 **	0.365 ***	0.321 ***	0.249***	0.172*	0.379***	0.32(***	0.139	0.021	0.343 ***	0.258 ***	0.165 *	0.032	0.348 ***	0.245 **
Niacin	0.246***	0.206 **	0.431 ***	0.409 ***	0.289***	0.217**	0.409***	0.35{***	0.308 ***	0.224 **	0.409***	0.339***	0.334 ***	0.236 **	0.444 ***	0.363 ***
Vitamin B6	0.207 **	0.156*	0.288 ***	0.224 **	0.221 **	0.128	0.322 ***	0.247***	0.253 ***	0.150*	0.342***	0.251 ***	0.312 ***	0.204 **	0.386 ***	0.284 ***
Folate	0.116		0.231 **	0.161*	0.099	-0.004	0.244 **	0.158*	0.124	0.009	0.216**	0.107	0.187 *	0.067	0.228 **	0.102
Vitamin B12	0.288***	0.276 ***	0.286 ***	0.271***	0.292***	0.276***	0.253 ***	0.23{**	0.208 **	0.188*	0.244 **	0.224 **	0.236 **	0.215 **	0.292 ***	0.273 ***
Vitamin C	0.279***	0.252 ***	0.379 ***	0.345***	0.338***	0.298***	0.485***	0.452***	0.314 ***	0.267 ***	0.460 ***	0.419***	0.354 ***	0.302 ***	0.499 ***	0.455 ***
Vitamin A	0.285***	0.257 ***	0.334 ***	0.297 ***	0.318***	0.276***	0.458 ***	0.422***	0.288 ***	0.236 **	0.411 ***	0.364 ***	0.319 ***	0.262 ***	0.444 ***	0.392 ***
Calcium	0.241**	0.204 **	0.193*	0.131	0.209**	0.144	0.222 **	0.152*	0.214 **	0.140	0.204 **	0.119	0.238 **	0.155 *	0.182 *	0.080
Iron	0.173*	0.114	0.106	-0.002	0.168*	0.067	0.119	-0.008	0.225 **	0.120	0.156*	0.017	0.256 ***	0.139	0.147	-0.018
Zinc	0.098	-0.015	0.115	-0.045	0.108	-0.072	0.111	-0.088	0.176*	0.008	0.159*	-0.048	0.195 **	0.002	0.146	-0.111

Table 10 Correlations between Food Group Diversity Scores and Estimated Usual Intakes of Individual Nutrients, All Women ^{a, b}

^a Usual intake of energy and individual nutrients are estimated by the best linear unbiased predictor (BLUP) following the method described in section 11 of the WDDP protocol (Arimond et al. 2008). Diversity scores are from round 2 data; BLUP calculation incorporates information from one to three rounds. ^b A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001.

Table 11a. Correlation between Energy from 6 Major Food Groups and MPA, With and Without Controlling for Total Energy Intake, All Women^{a, b}

Major food groups	Correlation between MPA and energy from each food group:	Partial correlation coefficients for energy from each food group (controlling for total energy)
All starchy staples	0.152*	-0.287 ***
All legumes and nuts	0.232**	0.116
All dairy	0.022	0.020
Other animal source foods	0.226 **	0.180*
Vitamin A-rich fruits and vegetables ^c	0.421 ***	0.388 ***
Other fruits and vegetables	0.158*	0.113

^a Numbers in bold indicate coefficients that changed direction when total energy was controlled for, with both coefficients being significant. A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001.

^b Energy from food groups is from second observation day; MPA is based on estimated usual intake, calculated using repeat observations for a subset of the sample. Transformed MPA (box-cox) was used in these correlations ^c Vitamin A-rich fruits and vegetables are defined as those with >120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Table 11b. Correlation between Energy from 9 Sub-Food Groups and MPA, With and Without Controlling for Total Energy Intake, All Women ^{a. b}

Major food groups	Correlation between MPA and energy from each food group:	Partial correlation coefficients for energy from each food group (controlling for total energy)
All starchy staples	0.152*	-0.287 ***
All legumes and nuts	0.232**	0.116
All dairy	0.022	0.020
Organ meat	_	-
Eggs	0.049	0.094
Flesh foods and other miscellaneous small animal protein	0.223 **	0.174*
Vitamin A-rich dark green leafy vegetables ^c	0.348 ***	0.360 ***
Other vitamin A-rich vegetables and fruits ^c	0.344 ***	0.304 ***
Other fruits and vegetables	0.158*	0.113

^a Numbers in bold indicate coefficients that changed direction when total energy was controlled for, with both coefficients being significant. A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001.
 ^b Energy from food groups is from second observation day; MPA is based on estimated usual intake, calculated using

^b Energy from food groups is from second observation day; MPA is based on estimated usual intake, calculated using repeat observations for a subset of the sample. Transformed MPA (box-cox) was used in these correlations ^c Vitamin A-rich fruits and vegetables are defined as those with >120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Major food groups	Correlation between MPA and energy from each food group:	Partial correlation coefficients for energy from each food group (controlling for total energy)
All starchy staples	0.152*	-0.287 ***
All legumes and nuts	0.232 **	0.116
All dairy	0.022	0.020
Organ meat	_	-
Eggs	0.049	0.094
Small fish eaten whole with bones	0.099	0.048
All other flesh foods and miscellaneous small animal protein	0.214 **	0.169*
Vitamin A-rich dark green leafy vegetables ^c	0.348 ***	0.360 ***
Vitamin A-rich deep yellow/orange/red vegetables ^c	0.054	-0.024
Vitamin C-rich vegetables ^d	0.089	0.051
Vitamin A-rich fruits ^c	0.341 ***	0.304 ***
Vitamin C-rich fruits ^d	0.100	0.134
All other fruits and vegetables	0.082	-0.005

Table 11c. Correlation between Energy from 13 Sub-Food Groups and MPA, With and Without Controlling for Total Energy Intake, All Women^{a, b}

^a Numbers in bold indicate coefficients that changed direction when total energy was controlled for, with both coefficients being significant. A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001.

^b Energy from food groups is from second observation day; MPA is based on estimated usual intake, calculated using repeat observations for a subset of the sample. Transformed MPA (box-cox) was used in these correlations ^c Vitamin A-rich fruits and vegetables are defined as those with >120 RE/100g *raw, taking into account retention* factors. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect. ^d Vitamin C-rich fruits and vegetables are defined as those with >9 mg/100g *raw, taking into account retention factors*.

Table 11d. Correlation between energy from 21 Sub-Food Groups and MPA, With and Without Controlling for Total Energy Intake, All Women^{a, b}

	Correlation between MPA and energy from	Partial correlation coefficients for energy from each food group
Major food groups	each food group:	(controlling for total energy)
Grains and grain products	0.112	-0.243 **
All other starchy staples	0.090	0.014
Cooked dry beans and peas	0.125	0.056
Soybeans and soy products	_	-
Nuts and seeds	0.193 **	0.102
Milk/yogurt	0.021	0.019
Cheese	0.019	0.024
Beef, pork, veal, lamb, goat, game meat	0.231 **	0.216 **
Organ meat	_	-
Chicken, duck, turkey, pigeon, guinea hen,	0.010	-0.009
game birds	0.010	-0.009
Large whole fish/dried fish/shellfish and	0.098	0.037
other seafood	0.098	0.037
Small fish eaten whole with bones	0.099	0.048
Insects, grubs, snakes, rodents and other	_	
small animal	_	_
Eggs	0.049	0.094
Vitamin A-rich dark green leafy vegetables ^c	0.348 ***	0.360 ***
Vitamin A-rich deep yellow/orange/red	0.054	-0.024
vegetables ^c	0.034	-0.024
Vitamin C-rich vegetables ^d	0.089	0.051
All other vegetables	0.013	-0.064
Vitamin A-rich fruits ^c	0.341 ***	0.304 ***
Vitamin C-rich fruits ^d	0.100	0.134
All other fruits	0.101	0.055

^a Numbers in bold indicate coefficients that changed direction when total energy was controlled for, with both coefficients being significant. A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001. ^b Energy from food groups is from second observation day; MPA is based on estimated usual intake, calculated using

^b Energy from food groups is from second observation day; MPA is based on estimated usual intake, calculated using repeat observations for a subset of the sample. Transformed MPA (box-cox) was used in these correlations ^c Vitamin A-rich fruits and vegetables are defined as those with >120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect

bioefficacy of carotenoids. We note that this correction is imperfect. ^d Vitamin C-rich fruits and vegetables are defined as those with >9 mg/100g *raw, taking into account retention factors*.

Number of		07 (•	,	,	Diversity	indica	tors						
food		FGI-6		FGI-6R		FGI-9		FGI-9R		FGI-13	I	GI-13R	FGI-21		FGI-21R	
groups eaten							Me	dian total ene	rgy int	ake (range)						
1	-	-	_	—	-	-	_	—	-	-	_	—	-	-	_	—
2	_	_	2867	(1389-4279)	-	_	2855	(1389-3431)	-	-	1998	(1389-3431)	-	-	1998	(1068-3431)
3	1281	(988-3103)	1912	(946-3393)	1423	(988-3103)	1917	(946-4279)	-	-	1917	(988-4279)	-	-	1912	(988-4279)
4	2074	(981-4279)	2213	(903-4565)	1998	(981-4061)	2177	(903-4565)	1918	(1038-4061)	2077	(903-4565)	1798	(988-3083)	1899	(903-4061)
5	2197	(768-5242)	2317	(714-5242)	2078	(946-4836)	2303	(714-5242)	2244	(981-4279)	2237	(714-5242)	2244	(1173-4279)	2249	(768-5242)
6	2334	(714-4491)	3001	(1864-3504)	2202	(714-5242)	2024	(1293-3779)	2000	(1131-4836)	2851	(1245-4493)	2044	(981-4836)	2537	(714-4493)
7					2791	(903-4491)	-	-	2202	(714-4565)	2808	(1789-3779)	1917	(768-4192)		(1245-3779)
8					-	-	-	-	2496	(1456-5242)	-	-	2266	(714-5242)	2317	(1789-2841)
9					-	_	-	_	2107	(903-4491)	-	-	2213	(903-4565)	-	-
10									—	-	-	-	3089	(1789-4491)	-	- 1
11									-	-	-	-	-	-	-	i –
12									-	-	-	-	-	-	-	i –
13									-	—	-	-	-	-	-	-
14													-	-	-	i –
15													-	-	-	-
16													-	-	-	i –
17													-	-	-	i –
18													-	—	-	- 1
19													-	—	-	i –
20													-	—	-	- 1
21													-	_	-	<u> </u>

Table 12. Total Energy Intak	e (kcal) by Foo	d Group Diversity	v Scores	All Women R2	a, b
Tuble 12. Total Energy Intak		a Group Diversit			

^a Energy intake and food group diversity scores for second observation day. ^b Light shading indicates impossible values (beyond range of possible scores). A ——nidicates that a cell has fewer than 5 observations. Cells with fewer than 10 observations have dark shading.

Table 13. Relationship between Food Group Diversity Scores and Total Energy Intake, All Women^a

	Food group o	liversity score	Total ene	rgy intake	Correlation Coefficient ^b
	(mean)	(median)	(mean)	(median)	
FGI-6	4.8	5.0	2316	2189	0.138
FGI-6R ^c	4.2	4.0	2316	2189	0.185*
FGI-9	5.4	6.0	2316	2189	0.197 **
FGI-9R ^c	4.3	4.0	2316	2189	0.215**
FGI-13	6.6	7.0	2316	2189	0.222 **
FGI-13R ^c	4.6	5.0	2316	2189	0.243 **
FGI-21	7.3	8.0	2316	2189	0.251 ***
FGI-21R ^c	4.9	5.0	2316	2189	0.276 ***

^a Food group diversity scores and mean and median energy intakes are from second observation day; BLUP for energy intake based on 1 to 3 observation days is used for correlation analysis.

^b A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001. ^c Refers to minimum intake of 15g for each of the food groups/sub food groups

Number of	of Diversity indicators																
food		FGI-6		FGI-6R		FGI-9		FGI-9R		FGI-13		FGI-13R		FGI-21		FGI-21R	
groups eaten						Median MPA (range)											
1	-	-	—	_	-	-	-	_	-	-	-	_	-	-	-	-	
2	-	-	0.21	(0.07-0.50)	-	-	0.21	(0.07-0.45)	-	-	0.20	(0.07-0.45)	-	-	0.19	(0.07-0.45)	
3	0.24	(0.05-0.60)	0.25	(0.00-0.60)	0.45	(0.05-0.60)	0.26	(0.00-0.60)	-	-	0.26	(0.00-0.60)	—	-	0.33	(0.01-0.60)	
4	0.30	(0.00-0.61)	0.37	(0.08-0.84)	0.30	(0.05-0.61)	0.33	(0.04-0.84)	0.33	(0.07-0.43)	0.33	(0.04-0.84)	0.24	(0.05-0.55)	0.30	(0.04-0.69)	
5	0.40	(0.04-0.84)	0.36	(0.04-0.88)	0.34	(0.00-0.78)	0.36	(0.11-0.88)	0.27	(0.00-0.57)	0.34	(0.11-0.88)	0.33	(0.01-0.50)	0.34	(0.00-0.84)	
6	0.36	(0.11-0.88)	0.62	(0.34-0.75)	0.40	(0.04-0.84)	0.51	(0.25-0.77)	0.25	(0.04-0.84)	0.51	· · /	0.26	(0.04-0.69)	0.46	(0.11-0.88)	
7					0.52	(0.21-0.88)	—	-	0.35	(0.09-0.88)	0.55	(0.34-0.75)	0.34	(0.00-0.84)	0.60	(0.34-0.75)	
8					-	-	-	_	0.42	(0.08-0.81)	-	-	0.35	(0.11-0.88)	0.55	(0.36-0.81)	
9					—	-	—	_	0.52	(0.18-0.77)	—	-	0.40	(0.08-0.75)	—	-	
10									-	-	—	-	0.53	(0.33-0.81)	—	-	
11									-	-	-	-	-	-	—	_	
12									-	-	-	-	-	-	—	_	
13									-	_	-	_	-	-	-	-	
14													-	-	-	-	
15													-	-	-	_	
16													-	-	-	_	
17													-	-	-	_	
18													-	-	-	-	
19													-	-	-	-	
20													-	-	-	_	
21 ^a Eood group div													—	_	-	_	

Table 14. MPA by Food Group Diversity Scores, All Women ^{a, b}

^a Food group diversity scores are from second observation day; MPA is is based on estimated usual intake, calculated using repeat observations for a subset of the sample.

^b Light shading indicates impossible values (beyond range of possible scores). A ——nidicates that a cell has fewer than 5 observations. Cells with fewer than 10 observations have dark shading.

		ıp diversity ore	м	PA	Correlation Coefficient ^b	Partial correlation controlling for total energy intake ^b
	(mean)	(median)	(mean)	(median)		
FGI-6	4.8	5.0	0.38	0.34	0.236 **	0.193 **
FGI-6R [℃]	4.2	4.0	0.38	0.34	0.333 ***	0.281 ***
FGI-9	5.4	6.0	0.38	0.34	0.263 ***	0.188*
FGI-9R [℃]	4.3	4.0	0.38	0.34	0.387 ***	0.330 ***
FGI-13	6.6	7.0	0.38	0.34	0.255 ***	0.162*
FGI-13R ^c	4.6	5.0	0.38	0.34	0.394 ***	0.321 ***
FGI-21	7.3	8.0	0.38	0.34	0.321 ***	0.225 **
FGI-21R ^c	4.9	5.0	0.38	0.34	0.438 ***	0.356 ***

Table 15. Relationship between MPA and Food Group Diversity Scores, All Women ^a

^a Food group diversity scores are from second observation day, MPA is based on one to three observations days; Transformed MPA (box-cox) and BLUP for total energy intake were used for correlation analysis. ^b A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001. ^c Refers to minimum intake of 15g for each of the food groups/sub food groups.

Dietary Diversity as a Measure of the Micronutrient Adequacy of Women's Diets: Results from Ouagadougou, Burkina Faso Site

Table 16. R	esults of C	ordinary	/ Least Squa	ares Reç	pression An	alysis o	t the Deterr	ninants	of MPA, A	All Won	nen ", "					
	FGI-	6	FGI-6	R	FGI-9	9	FGI-9	R	FGI-1	13	FGI-1	3R	FGI-2	21	FGI-2	1R
							Not co	ontrollin	g for energ	У						
	P	Stan dard	P	Stan dard		Stan dard		Stan dard		Stan dard		Stan dard	D	Stan dard	D	Stan dard
Constant	B	error	B	error		error		error 0.509					B	error 0.526	B -0.765	error
Constant Woman's	-0.904	0.545	-0.864	0.525	-0.684	0.536	-0.742	0.509	-0.598	0.538	-0.737	0.513	-0.644	0.526	-0.765	0.504
height	-0.001	0.003	-0.001	0.003	-0.001	0.003	-0.002	0.003	-0.001	0.003	-0.001	0.003	-0.001	0.003	-0.001	0.003
Age	-0.006*	0.003	-0.004	0.002	-0.005	0.003	-0.004	0.002	-0.005*	0.003	-0.004	0.002	-0.005*	0.002	-0.003	0.002
Lactating (0/1)	-0.059	0.047	-0.069	0.046	-0.066	0.047	-0.063	0.045	-0.072	0.048	-0.065	0.045	-0.082	0.047	-0.066	0.045
Pregnant ^d (0/1)		-		-		-		-		-		-		-		-
Dietary diversity score	0.099 ***	0.028	0.095 ***	0.020	0.072 ***	0.020	0.097 ***	0.017	0.041**	0.013	0.080***	0.015	0.046 ***	0.011	0.078***	0.013
Adjusted R ²	0.085**		0.136 ***		0.089 ***		0.175 ***		0.076**		0.163***		0.117 ***		0.194 ***	
							Con	trolling	for energy							
	в	Stan dard error	В	Stan dard error	в	Stan dard error	в	Stan dard error	в	Stan dard error	в	Stan dard error	в	Stan dard error	в	Stan dard error
Constant	-3.626 ***	0.488	-3.567 ***	0.472	-3.491 ***	0.488	-3.411 ***	0.466	-3.464 ***	0.493	-3.411 ***	0.472	-3.421 ***	0.484	-3.368 ***	0.467
Woman's height	-0.003	0.002	-0.003	0.002	-0.004	0.002	-0.004	0.002	-0.004	0.002	-0.004	0.002	-0.004	0.002	-0.004	0.002
Age	-0.002	0.002	-0.001	0.002	-0.002	0.002	-0.001	0.002	-0.002	0.002	-0.001	0.002	-0.002	0.002	-0.001	0.002
Lactating (0/1)	-0.275***	0.041	-0.276***	0.040	-0.278 ***	0.041	-0.266 ***	0.040	-0.282***	0.042	-0.269 ***	0.040	-0.283 ***	0.041	-0.264 ***	0.040
Pregnant ^d (0/1)		-		-		-		-		-		-		-		-
Dietary diversity score Total	0.055*	0.022	0.064 ***	0.016	0.039*	0.015	0.064 ***	0.014	0.020*	0.010	0.050 ***	0.012	0.026**	0.008	0.049 ***	0.010
energy intake ^c	156.440 ***	14.689	152.460***	14.237	155.951***	14.736	148.475***	14.136	157.289 ***	14.871	149.046 ***	14.358	153.182 ***	14.671	145.746 ***	14.286
Adjusted R ²	0.468 ***		0.500 ***		0.468 ***		0.515***		0.460 ***		0.503 ***		0.478***		0.515***	

Table 16. Results of Ordinary Least Squares Regression Analysis of the Determinants of MPA, All Women ^{a, b}

^a A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001. For the adjusted R², the stars indicate the significance level of the F statistic of the regression.

^b Transformed MPA (box-cox), and BLUP for total energy intake were used in the regressions. MPA and BLUP calculation for total energy intake incorporates information from one to three rounds.

^c BLUP for total energy intake was divided by 1000 before running the regressions due to the large scale of the energy variable and the small scale of MPA.

^d The dummy variable for pregnancy was first introduced in the regression, but was automatically dropped by the software

Based on the results shown in Table 17, three MPA cut-offs are considered - 50%, 60% and 70% - for Tables 18-19.

Table 17. Percent of Observation Day	s above Selected Cut-Off(s) for MPA, All Women
--------------------------------------	--

	Percent (number)				
Women with MPA >50%	26.2	(47)			
Women with MPA >60%	15.1	(28)			
Women with MPA >70%	7.4	(13)			
Women with MPA >80%	1.6	(3)			
Women with MPA >90%	0.0	(0)			

Table 18. MPA: Performance of Diversity Scores, All Women ^a

	Range	AUC	p-value ^b	SEM °	95% CI ^d
		MP	A >50% (first cut-	off)	
FGI-6	2.0-6.0	0.645	<0.001	0.037	0.572-0.717
FGI-6R ^e	2.0-6.0	0.652	0.001	0.044	0.566-0.738
FGI-9	2.0-7.0	0.673	<0.001	0.042	0.590-0.756
FGI-9R ^e	2.0-7.0	0.684	<0.001	0.044	0.599-0.770
FGI-13	2.0-10.0	0.659	<0.001	0.044	0.572-0.746
FGI-13R ^e	2.0-8.0	0.701	<0.001	0.044	0.616-0.787
FGI-21	2.0-11.0	0.691	<0.001	0.044	0.605-0.777
FGI-21R ^e	2.0-9.0	0.731	<0.001	0.043	0.647-0.815
		MPA	> 60% (second cւ	ıt-off)	
FGI-6	2.0-6.0	0.640	0.003	0.046	0.549-0.731
FGI-6R ^e	2.0-6.0	0.680	<0.001	0.051	0.580-0.779
FGI-9	2.0-7.0	0.671	0.001	0.052	0.568-0.774
FGI-9R ^e	2.0-7.0	0.669	0.001	0.050	0.570-0.768
FGI-13	2.0-10.0	0.607	0.033	0.050	0.509-0.705
FGI-13R ^e	2.0-8.0	0.702	<0.001	0.052	0.600-0.804
FGI-21	2.0-11.0	0.665	0.002	0.053	0.561-0.769
FGI-21R ^e	2.0-9.0	0.768	<0.001	0.046	0.677-0.859
		MP/	A > 70% (third cut	-off)	
FGI-6	2.0-6.0	0.624	0.005	0.044	0.538-0.711
FGI-6R ^e	2.0-6.0	0.631	0.348	0.062	0.509-0.752
FGI-9	2.0-7.0	0.692	0.001	0.059	0.576-0.808
FGI-9R ^e	2.0-7.0	0.634	0.027	0.061	0.516-0.753
FGI-13	2.0-10.0	0.687	0.003	0.063	0.563-0.812
FGI-13R ^e	2.0-8.0	0.739	<0.001	0.051	0.639-0.839
FGI-21	2.0-11.0	0.714	0.001	0.065	0.586-0.842
FGI-21R ^e	2.0-9.0	0.802	<0.001	0.041	0.722-0.883

^a Diversity scores are from second observation day. MPA is calculated based on one to three observation days. ^b P-value for test of null hypothesis that area=0.5 (—eutral" diagonal line on ROC graph). ^c Standard error of the mean.

^d Confidence interval.

^e Refers to minimum intake of 15g for each food groups/sub food groups.

		•		MPA > 50	% (first cut-	off)			
	_	FGI-6	FGI-6R	FGI-9	FGI-9R	FGI-13	FGI-13R	FGI-21	FGI-21R
	AUC ^c	0.645	0.652	0.673	0.684	0.659	0.701	0.691	0.731
					P	-values			
FGI-6	0.645								
FGI-6R [₫]	0.652	0.824							
FGI-9	0.673	0.260	0.603						
FGI-9R ^d	0.684	0.264	0.083	0.772					
FGI-13	0.659	0.732	0.887	0.681	0.536				
FGI-13R ^d	0.701	0.135	0.078	0.476	0.456	0.222			
FGI-21	0.691	0.290	0.404	0.655	0.877	0.164	0.803		
FGI-21R ^d	0.731	0.035	0.015	0.189	0.096	0.086	0.193	0.312	
					(second cu				
		FGI-6	FGI-6R	FGI-9	FGI-9R	FGI-13	FGI-13R	FGI-21	FGI-21R
	AUC ^c	0.640	0.680	0.671	0.669	0.607	0.702	0.665	0.768
					P	-values			
FGI-6	0.640								
FGI-6R ^d	0.680	0.274							
FGI-9	0.671	0.326	0.837						
FGI-9R ^d	0.669	0.451	0.564	0.964					
FGI-13	0.607	0.535	0.144	0.174	0.208				
FGI-13R ^d	0.702	0.172	0.530	0.482	0.311	0.015			
FGI-21	0.665	0.687	0.785	0.913	0.936	0.065	0.469		
FGI-21R ^d	0.768	0.006	0.026	0.052	0.008	0.000	0.019	0.011	
					% (third cut∙				
	_	FGI-6	FGI-6R	FGI-9	FGI-9R	FGI-13	FGI-13R	FGI-21	FGI-21R
	AUC ^c	0.624	0.631	0.692	0.634	0.687	0.739	0.714	0.802
					P	-values			
FGI-6	0.624								
FGI-6R ^d	0.631	0.909							
FGI-9	0.692	0.151	0.342						
FGI-9R ^d	0.634	0.862	0.904	0.374					
FGI-13	0.687	0.394	0.356	0.946	0.433				
FGI-13R ^d	0.739	0.063	0.033	0.445	0.038	0.160			
FGI-21	0.714	0.270	0.236	0.804	0.289	0.550	0.637		
FGI-21R ^d	0.802	0.002	0.004	0.123	0.004	0.047	0.111	0.050	

Table 19. MPA: Tests Comparing AUC for Various Diversity Scores, All Women^{a, b}

^a Diversity scores are from second observation day. MPA is calculated based on one to three observation days. ^b P-value for test of null hypothesis that area under the curve is equal for the 2 indicators. P-values <0.05 are in bold type. ^c Area under the curve. ^d Refers to minimum intake of 15 g for each food groups/sub food groups.

N	Cutoff	Sensitivity	Specificity	Proportion of false positives	Proportion of false negatives	Total proportion misclassified
		-		MPA > 50%	•	
178	≥1	100.0	0.0	73.6	0.0	73.6
178	≥2	100.0	0.0	73.6	0.0	73.6
177	≥3	100.0	0.8	73.0	0.0	73.0
171	≥4	95.7	3.8	70.8	1.1	71.9
137	≥ 5	93.6	29.0	52.2	1.7	53.9
21	6	21.3	91.6	6.2	20.8	27.0
				MPA > 60%		
178	≥1	100.0	0.0	84.3	0.0	84.3
178	≥2	100.0	0.0	84.3	0.0	84.3
177	≥3	100.0	0.7	83.7	0.0	83.7
171	≥4	96.4	4.0	80.9	0.6	81.5
137	≥ 5	92.9	26.0	62.4	1.1	63.5
21	6	25.0	90.7	7.9	11.8	19.7
				MPA > 70%		
178	≥1	100.0	0.0	92.7	0.0	92.7
178	≥2	100.0	0.0	92.7	0.0	92.7
177	≥3	100.0	0.6	92.1	0.0	92.1
171	≥4	100.0	4.2	88.8	0.0	88.8
137	≥ 5	100.0	24.8	69.7	0.0	69.7
21	6	15.4	88.5	10.7	6.2	16.9

Table 20a. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity (FGI-6) and MPA, By Diversity Cut-Offs, All Women ^a

^a Diversity scores are from second observation day. MPA is calculated based on one to three observation days.

Table 20b. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity
(FGI-6R) and MPA, By Diversity Cut-Offs, All Women ^a

n	Cutoff	Sensitivity	Specificity	Proportion of false positives	Proportion of false negatives	Total proportion misclassified
	outon	cononing	opcomony	MPA > 50%	luice negativee	mooluoomou
178	≥1	100.0	0.0	73.6	0.0	73.6
178	≥2	100.0	0.0	73.6	0.0	73.6
170	≥ 3	100.0	6.1	69.1	0.0	69.1
137	≥4	89.4	27.5	53.4	2.8	56.2
73	≥ 5	55.3	64.1	26.4	11.8	38.2
8	6	14.9	99.2	0.6	22.5	23.0
				MPA > 60%		
178	≥1	100.0	0.0	84.3	0.0	84.3
178	≥2	100.0	0.0	84.3	0.0	84.3
170	≥ 3	100.0	5.3	79.8	0.0	79.8
137	≥4	96.4	26.7	61.8	0.6	62.4
73	≥ 5	57.1	62.0	32.0	6.7	38.8
8	6	21.4	98.7	1.1	12.4	13.5
				MPA > 70%		
178	≥1	100.0	0.0	92.7	0.0	92.7
178	≥2	100.0	0.0	92.7	0.0	92.7
170	≥ 3	100.0	4.8	88.2	0.0	88.2
137	≥4	100.0	24.8	69.7	0.0	69.7
73	≥ 5	53.8	60.0	37.1	3.4	40.4
8	6	7.7	95.8	3.9	6.7	10.7

	/	A, By Diversi	, ,	Proportion of	Proportion of	Total proportion
Ν	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified
				MPA > 50%		
178	≥ 1	100.0	0.0	73.6	0.0	73.6
178	≥2	100.0	0.0	73.6	0.0	73.6
177	≥ 3	100.0	0.8	73.0	0.0	73.0
172	≥ 4	95.7	3.1	71.3	1.1	72.5
146	≥ 5	93.6	22.1	57.3	1.7	59.0
100	≥ 6	76.6	51.1	36.0	6.2	42.1
18	≥ 7	21.3	93.9	4.5	20.8	25.3
0	≥ 8	-	-	-	-	-
0	9	-	-	-	-	-
				MPA > 60%		
178	≥ 1	100.0	0.0	84.3	0.0	84.3
178	≥2	100.0	0.0	84.3	0.0	84.3
177	≥ 3	100.0	0.7	83.7	0.0	83.7
172	≥ 4	96.4	3.3	81.5	0.6	82.0
146	≥ 5	92.9	20.0	67.4	1.1	68.5
100	≥ 6	78.6	48.0	43.8	3.4	47.2
18	≥ 7	25.0	92.7	6.2	11.8	18.0
0	≥ 8	-	-	-	-	-
0	9	-	_	-	-	-
				MPA > 70%		
178	≥ 1	100.0	0.0	92.7	0.0	92.7
178	≥2	100.0	0.0	92.7	0.0	92.7
177	≥ 3	100.0	0.6	92.1	0.0	92.1
172	≥4	100.0	3.6	89.3	0.0	89.3
146	≥ 5	100.0	19.4	74.7	0.0	74.7
100	≥6	84.6	46.1	50.0	1.1	51.1
18	≥7	23.1	90.9	8.4	5.6	14.0
0	≥ 8	-	-	-	-	-
0	9	-	_	-	-	-

Table 20c. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity
(FGI-9) and MPA, By Diversity Cut-Offs, All Women ^a

				Proportion of	Proportion of	Total proportion
n	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified
				MPA > 50%		
178	≥ 1	100.0	0.0	73.6	0.0	73.6
178	≥2	100.0	0.0	73.6	0.0	73.6
171	≥ 3	100.0	5.3	69.7	0.0	69.7
139	≥ 4	91.5	26.7	53.9	2.2	56.2
77	≥ 5	61.7	63.4	27.0	10.1	37.1
24	≥ 6	29.8	92.4	5.6	18.5	24.2
2	≥7	4.3	100.0	0.0	25.3	25.3
0	≥ 8	_	_	-	_	_
0	9	_	_	_	_	_
				MPA > 60%		
178	≥ 1	100.0	0.0	84.3	0.0	84.3
178	≥2	100.0	0.0	84.3	0.0	84.3
171	≥ 3	100.0	4.7	80.3	0.0	80.3
139	≥ 4	96.4	25.3	62.9	0.6	63.5
77	≥ 5	60.7	60.0	33.7	6.2	39.9
24	≥ 6	28.6	89.3	9.0	11.2	20.2
2	≥7	3.6	99.3	0.6	15.2	15.7
0	≥ 8	_	_	-	_	-
0	9	_	_	_	_	_
				MPA > 70%		
178	≥ 1	100.0	0.0	92.7	0.0	92.7
178	≥2	100.0	0.0	92.7	0.0	92.7
171	≥ 3	100.0	4.2	88.8	0.0	88.8
139	≥4	100.0	23.6	70.8	0.0	70.8
77	≥ 5	61.5	58.2	38.8	2.8	41.6
24	≥ 6	15.4	86.7	12.4	6.2	18.5
2	≥7	0.0	98.8	1.1	7.3	8.4
0	≥ 8	_	_	_	-	_
0	9	-	_	_	-	-

Table 20d. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity
(FGI-9R) and MPA. By Diversity Cut-Offs, All Women ^a

(FGI-'	13) and M	PA, By Divers	ity Cut-Offs,			
	• • •		• •• •	Proportion of	Proportion of	Total proportion
<u>n</u>	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified
				MPA > 50%		
178	≥ 1	100.0	0.0	73.6	0.0	73.6
178	≥2	100.0	0.0	73.6	0.0	73.6
177	≥ 3	100.0	0.8	73.0	0.0	73.0
173	≥ 4	95.7	2.3	71.9	1.1	73.0
158	≥ 5	95.7	13.7	63.5	1.1	64.6
138	≥ 6	93.6	28.2	52.8	1.7	54.5
105	≥7	74.5	46.6	39.3	6.7	46.1
56	≥ 8	46.8	74.0	19.1	14.0	33.1
16	≥ 9	17.0	93.9	4.5	21.9	26.4
2	≥10	2.1	99.2	0.6	25.8	26.4
0	≥11	-	-	-	-	-
0	≥12	_	-	-	-	-
0	13	-	—	-	-	
				MPA > 60%		
178	≥1	100.0	0.0	84.3	0.0	84.3
178	≥ 2	100.0	0.0	84.3	0.0	84.3
177	≥ 3	100.0	0.7	83.7	0.0	83.7
173	≥ 4	96.4	2.7	82.0	0.6	82.6
158	≥ 5	96.4	12.7	73.6	0.6	74.2
138	≥6	96.4	26.0	62.4	0.6	62.9
105	≥7	75.0	44.0	47.2	3.9	51.1
56	≥ 8	39.3	70.0	25.3	9.6	34.8
16	≥ 9	7.1	90.7	7.9	14.6	22.5
2	≥10	3.6	99.3	0.6	15.2	15.7
0	≥11	-	-	-	-	-
0	≥12	-	-	-	-	-
0	13	_	_	_	-	-
				MPA > 70%		
178	≥1	100.0	0.0	92.7	0.0	92.7
178	≥2	100.0	0.0	92.7	0.0	92.7
177	≥ 3	100.0	0.6	92.1	0.0	92.1
173	≥ 4	100.0	3.0	89.9	0.0	89.9
158	≥ 5	100.0	12.1	81.5	0.0	81.5
138	≥ 6	100.0	24.2	70.2	0.0	70.2
105	≥7	84.6	43.0	52.8	1.1	53.9
56	≥ 8	53.8	70.3	27.5	3.4	30.9
16	≥9	15.4	91.5	7.9	6.2	14.0
2	≥10	7.7	99.4	0.6	6.7	7.3
0	≥11	_	_	-	-	-
0	≥12	_	_	_	_	_
0	13	_	_	_	_	_

Table 20e. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity (FGI-13) and MPA, By Diversity Cut-Offs, All Women^a

nCutoffSensitivitySpecificityfalse positivesfalse negativesmisclassified178≥ 1100.00.073.60.073.6178≥ 2100.00.073.60.073.6178≥ 2100.00.073.60.073.6172≥ 3100.04.670.20.070.2141≥ 491.525.255.12.257.393≥ 572.355.033.17.340.439≥ 644.786.310.114.624.711≥ 712.896.22.823.025.81≥ 82.1100.00.025.825.80≥ 90≥ 100≥ 12178≥ 1100.00.084.30.084.3178≥ 2100.00.084.30.084.3178≥ 1100.04.080.90.080.9141≥ 496.424.064.00.664.693≥ 571.451.341.04.545.539≥ 650.083.314.07.921.911≥ 714.395.33.913.517.41≥ 80.099.30.615.716.3	<u> </u>	,	MPA, By Dive	2	Proportion of	Proportion of	Total proportion
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n	Cutoff	Sensitivity	Specificity			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	178	≥1	100.0	0.0	73.6	0.0	73.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	178		100.0		73.6	0.0	73.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	172	≥ 3	100.0	4.6	70.2	0.0	70.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		≥ 4	91.5				57.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2.1	100.0	0.0	25.8	25.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	_	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	_	-	-	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	_	-	-	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	13	-	-	-	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$11 \ge 7$ 14.3 95.3 3.9 13.5 17.4 $1 \ge 8$ 0.0 99.3 0.6 15.7 16.3 $0 \ge 9$ $ 0 \ge 10$ $ -$							
1 ≥ 8 0.0 99.3 0.6 15.7 16.3 0 ≥ 9 - - - - - 0 ≥ 10 - - - - -							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
0 ≥ 10			0.0	99.3	0.6	15.7	16.3
			-	_	-	-	-
			-	_	-	-	-
	0		-	-	-	-	-
0 ≥ 12			-	-	-	-	-
	0	13	-	_		-	_
MPA > 70%	470	~ ~ ~	400.0	0.0		0.0	00.7
178 ≥ 1 100.0 0.0 92.7 0.0 92.7 470 > 0 0.0 92.7 0.0 92.7							
178 ≥ 2 100.0 0.0 92.7 0.0 92.7 178 ≥ 2 100.0 0.0 92.7 0.0 92.7							
172 ≥ 3 100.0 3.6 89.3 0.0 89.3 144 > 4 100.0 30.4 74.0 0.0 74.0							
$141 \ge 4$ 100.0 22.4 71.9 0.0 71.9							
$93 \ge 5$ 92.3 50.9 45.5 0.6 46.1							
$39 \ge 6$ 46.2 80.0 18.5 3.9 22.5							
$11 \ge 7$ 7.7 93.9 5.6 6.7 12.4 $1 \ge 8$ 0.0 99.4 0.6 7.3 7.9							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.0	99.4	0.0	1.3	1.9
$0 \ge 10 $			-	_	_	-	-
$0 \ge 10 = $			-	_	_	-	-
$0 \ge 11 = $			_	_	—	_	_
0 212			_	_	_	_	_

Table 20f. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity (FGI-13R) and MPA, By Diversity Cut-Offs, All Women^a

<u> </u>		PA, By Divers		Proportion of	Proportion of	Total proportion
n	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified
				MPA > 50%	..	
178	≥ 1	100.0	0.0	73.6	0.0	73.6
178	≥2	100.0	0.0	73.6	0.0	73.6
177	≥ 3	100.0	0.8	73.0	0.0	73.0
175	≥ 4	97.9	1.5	72.5	0.6	73.0
161	≥ 5	95.7	11.5	65.2	1.1	66.3
147	≥ 6	95.7	22.1	57.3	1.1	58.4
125	≥7	87.2	35.9	47.2	3.4	50.6
94	≥ 8	72.3	54.2	33.7	7.3	41.0
44	≥ 9	42.6	81.7	13.5	15.2	28.7
16	≥ 10	21.3	95.4	3.4	20.8	24.2
1	≥ 11	0.0	99.2	0.6	26.4	27.0
0	≥ 12	_	_	_	-	-
0	≥ 13	-	_	_	-	-
0	≥ 14	-	_	_	-	-
0	≥ 15	-	-	-	-	-
0	≥ 16	-	-	-	-	-
0	≥ 17	-	-	-	-	-
0	≥ 18	-	-	-	-	-
0	≥ 19	-	-	-	-	-
0	≥ 20	-	_	-	-	-
0	21	-	—	-	-	
				MPA > 60%		
178	≥ 1	100.0	0.0	84.3	0.0	84.3
178	≥2	100.0	0.0	84.3	0.0	84.3
177	≥ 3	100.0	0.7	83.7	0.0	83.7
175	≥4	96.4	1.3	83.1	0.6	83.7
161	≥ 5	96.4	10.7	75.3	0.6	75.8
147	≥6	96.4	20.0	67.4	0.6	68.0
125	≥7	89.3	33.3	56.2	1.7	57.9
94	≥ 8	71.4	50.7	41.6	4.5	46.1
44	≥9	42.9	78.7	18.0	9.0	27.0
16	≥ 10	17.9	92.7	6.2	12.9	19.1
1	≥ 11	0.0	99.3	0.6	15.7	16.3
0	≥ 12	-	-	-	-	-
0	≥ 13	_	-	-	-	-
0	≥ 14 > 15	-	_	_	-	-
0 0	≥ 15 ≥ 16	-	-	-	-	-
	≥ 16 ≥ 17	-	-	_	-	-
0 0	≥17 ≥18	-	_	-	-	-
0	≥ 18 ≥ 19	-	_	-	-	-
0	≥ 19 ≥ 20	_	_	_	_	_
0	220 21	_	_	_	_	_
	21	_	_	-	-	_

Table 20g. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity (FGI-21) and MPA, By Diversity Cut-Offs, All Women^a

(continued)

				Proportion of	Proportion of	Total proportion
n	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified
				MPA > 70%		
178	≥ 1	100.0	0.0	92.7	0.0	92.7
178	≥ 2	100.0	0.0	92.7	0.0	92.7
177	≥ 3	100.0	0.6	92.1	0.0	92.1
175	≥ 4	100.0	1.8	91.0	0.0	91.0
161	≥ 5	100.0	10.3	83.1	0.0	83.1
147	≥ 6	100.0	18.8	75.3	0.0	75.3
125	≥ 7	100.0	32.1	62.9	0.0	62.9
94	≥ 8	76.9	49.1	47.2	1.7	48.9
44	≥ 9	46.2	77.0	21.3	3.9	25.3
16	≥ 10	30.8	92.7	6.7	5.1	11.8
1	≥ 11	0.0	99.4	0.6	7.3	7.9
0	≥ 12	_	_	_	-	_
0	≥ 13	_	_	_	_	_
0	≥ 14	_	_	_	-	_
0	≥ 15	_	_	_	_	_
0	≥ 16	_	_	_	_	_
0	≥ 17	_	_	_	-	_
0	≥ 18	_	_	_	_	_
0	≥ 19	_	_	_	-	_
0	≥ 20	_	_	_	-	_
0	21	_	_	_	_	_

Table 20g (continued). Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity (FGI-21) and MPA, By Diversity Cut-Offs, All Women^a

^a Diversity scores are from second observation day. MPA is calculated based on one to three observation days.

Table 20h. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity
(FGI-21R) and MPA, By Diversity Cut-Offs, All Women ^a

				Proportion of	Proportion of	Total proportion
n	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified
				MPA > 50%		
178	≥ 1	100.0	0.0	73.6	0.0	73.6
178	≥ 2	100.0	0.0	73.6	0.0	73.6
172	≥ 3	100.0	4.6	70.2	0.0	70.2
150	≥ 4	91.5	18.3	60.1	2.2	62.4
103	≥ 5	83.0	51.1	36.0	4.5	40.4
62	≥ 6	63.8	75.6	18.0	9.6	27.5
19	≥7	23.4	93.9	4.5	20.2	24.7
6	≥ 8	8.5	98.5	1.1	24.2	25.3
1	≥ 9	2.1	100.0	0.0	25.8	25.8
0	≥ 10	-	-	-	-	-
0	≥ 11	-	-	-	-	-
0	≥ 12	-	-	-	-	-
0	≥ 13	-	-	-	-	-
0	≥ 14	-	-	-	-	-
0	≥ 15	-	-	-	-	-
0	≥ 16	-	-	-	-	-
0	≥ 17	-	_	-	-	-
0	≥ 18	-	_	-	-	-
0	≥ 19	-	_	-	-	-
0	≥ 20	-	-	-	-	-
0	21	_	_	-	-	_

(continued)

Table 20h (continued). Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity (FGI-21R) and MPA, By Diversity Cut-Offs, All Women^a

Diversity (FGI-21R) and MPA, By Diversity Cut-Offs, All Women							
				Proportion of	Proportion of	Total proportion	
n	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified	
				MPA > 60%			
178	≥1	100.0	0.0	84.3	0.0	84.3	
178	≥2	100.0	0.0	84.3	0.0	84.3	
172	≥ 3	100.0	4.0	80.9	0.0	80.9	
150	≥ 4	96.4	18.0	69.1	0.6	69.7	
103	≥ 5	89.3	48.0	43.8	1.7	45.5	
62	≥ 6	71.4	72.0	23.6	4.5	28.1	
19	≥7	32.1	93.3	5.6	10.7	16.3	
6	≥ 8	7.1	97.3	2.2	14.6	16.9	
1	≥ 9	0.0	99.3	0.6	15.7	16.3	
Ō	≥ 10	_	_	_	_	_	
Õ	≥ 11	_	_	_	_	_	
Õ	≥ 12	_	_	_	_	_	
Ő	≥ 13	_	_	_	_	_	
Ő	≥ 14	_	_	_	_	_	
Ő	≥ 15	_	_	_	_	_	
Õ	≥ 16	_	_	_	_	_	
Ő	≥ 17	_	_	_	_	_	
Ő	≥ 18	_	_	_	_	_	
Ő	≥ 19	_	_	_	_	_	
Ő	≥ 20	_	_	_	_	_	
0	21	_	_	_	_	_	
	21			MPA > 70%			
178	≥ 1	100.0	0.0	92.7	0.0	92.7	
178	≥ 2	100.0	0.0	92.7	0.0	92.7	
170	≥ 3	100.0	3.6	89.3	0.0	89.3	
150	≥ 3 ≥ 4	100.0	17.0	77.0	0.0	77.0	
103	≥ 4 ≥ 5	100.0	45.5	50.6	0.0	50.6	
62	≥ 5 ≥ 6	84.6	69.1	28.7	1.1	29.8	
19	≥0 ≥7	23.1	90.3	9.0	5.6	14.6	
6	≥ 7 ≥ 8	15.4	97.6	2.2	6.2	8.4	
1	≥ 0 ≥ 9	0.0	99.4	0.6	7.3	0.4 7.9	
0	≥ 9 ≥ 10	0.0			7.5	1.9	
0	≥ 10 ≥ 11	-	_	-	-	-	
0	≥ 11 ≥ 12	-	_	-	-	-	
0	≥ 12 ≥ 13	-	—	-	-	-	
0	≥13 ≥14	-	_	-	-	-	
		-	-	-	-	-	
0	≥ 15	-	_	-	-	-	
0	≥ 16	-	_	-	-	-	
0	≥ 17	-	_	-	-	-	
0	≥ 18	-	_	-	-	-	
0	≥ 19	-	-	-	-	-	
0	≥ 20	-	-	-	-	-	
0	21	-	-	-	-	_	

FIGURES

Histograms of intakes for 11 micronutrients (R2 data): Figures 1-11

Histograms for intra-individual SDs of intake, based on data from one to three rounds: Figures 12-22

Histograms for FGIs (R2 data): Figures 23-30

Histograms of PA for 11 micronutrients, based on data from one to three rounds: Figures 31-41

Histogram of MPA, based on data from one to three rounds: Figure 42

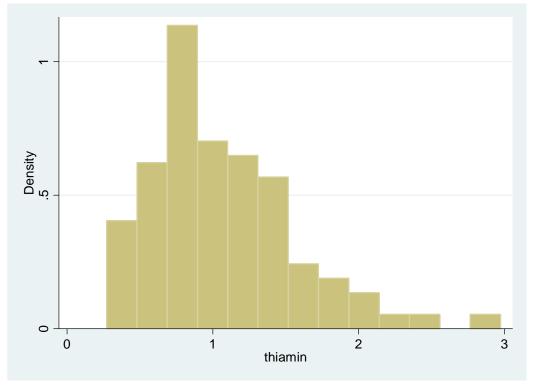
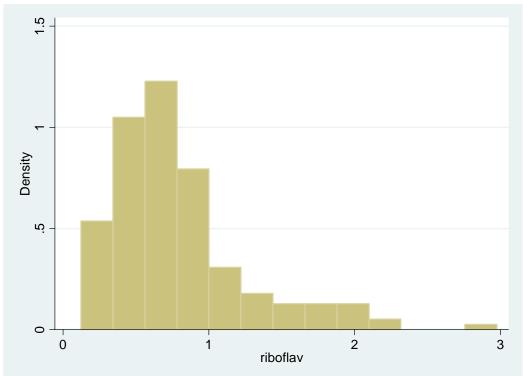



Figure 1. Distribution of Thiamin Intakes, All Women

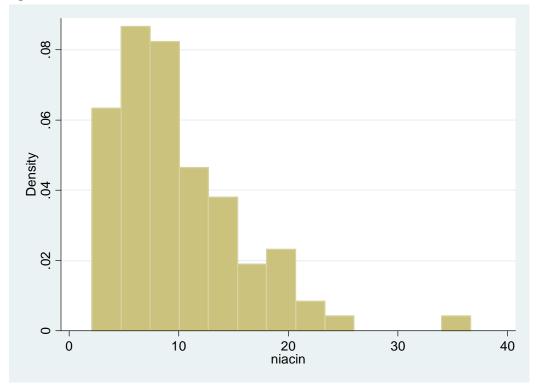
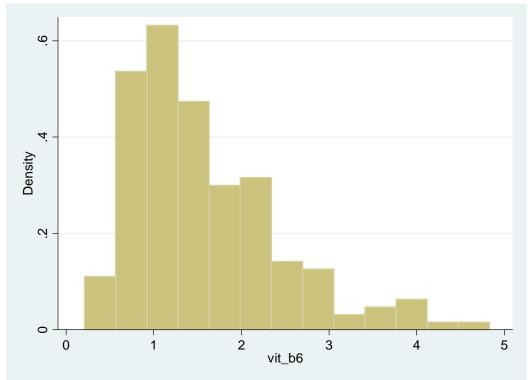



Figure 3. Distribution of Niacin Intakes, All Women

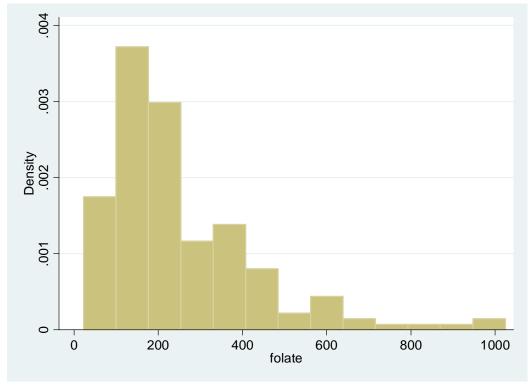
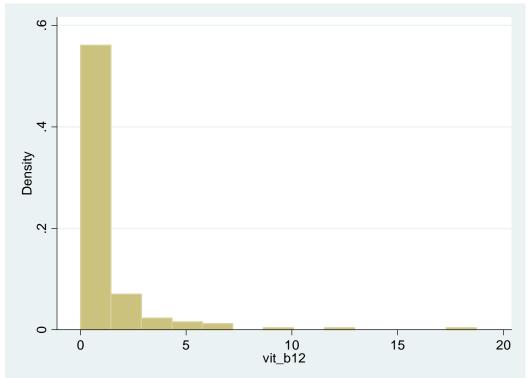



Figure 5. Distribution of Folate Intakes, All Women

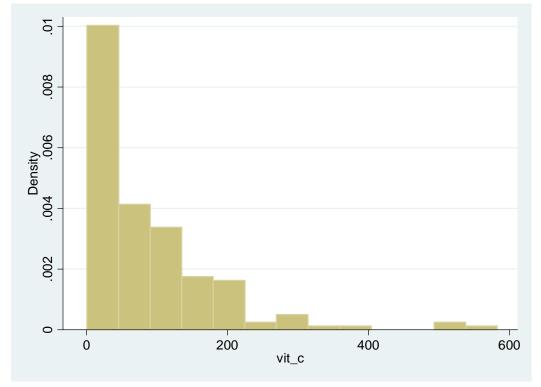
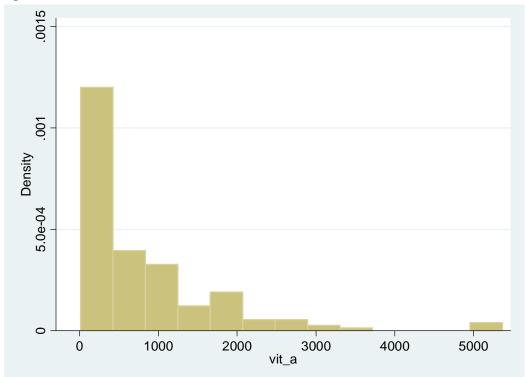



Figure 7. Distribution of Vitamin C Intakes, All Women

Figure 8. Distribution of Vitamin A Intakes, All Women

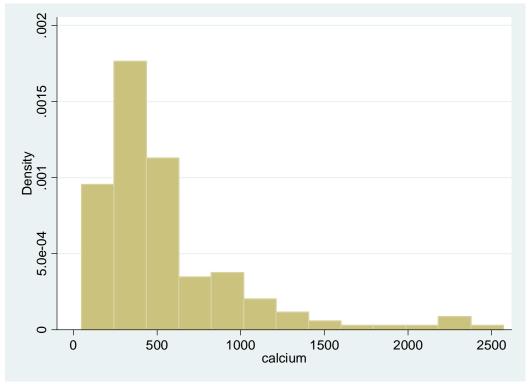
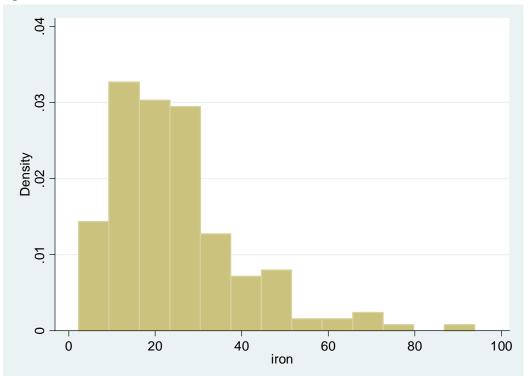



Figure 9. Distribution of Calcium Intakes, All Women

Figure 10. Distribution of Iron Intakes, All Women

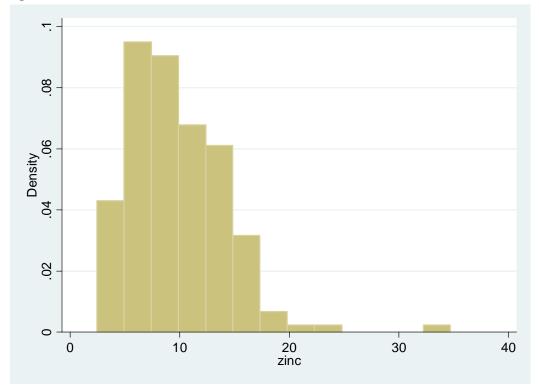
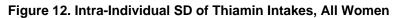
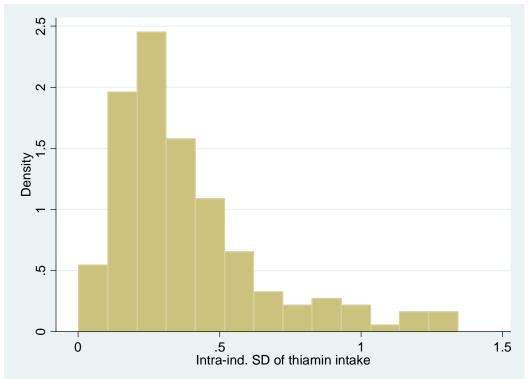




Figure 11. Distribution of Zinc Intakes, All Women

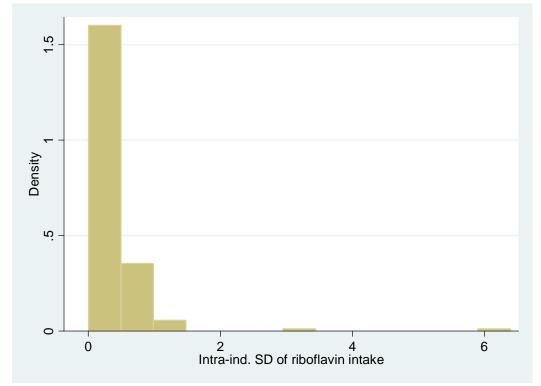
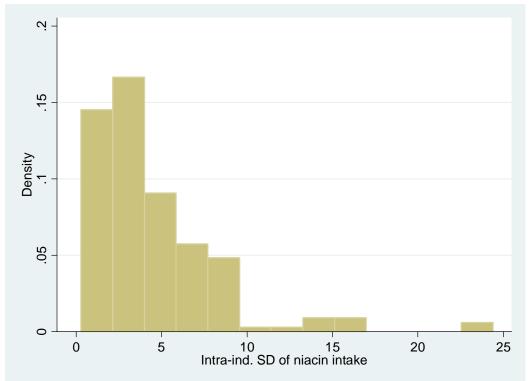



Figure 13. Intra-Individual SD of Riboflavin Intakes, All Women

Figure 14. Intra-Individual SD of Niacin Intakes, All Women

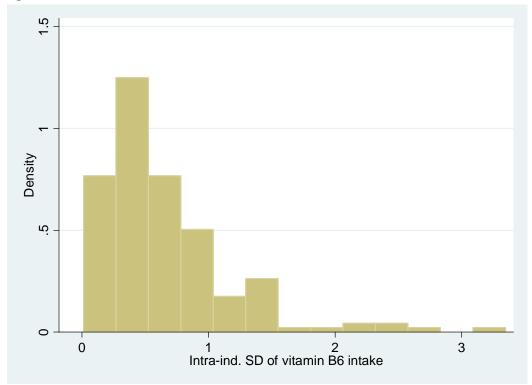
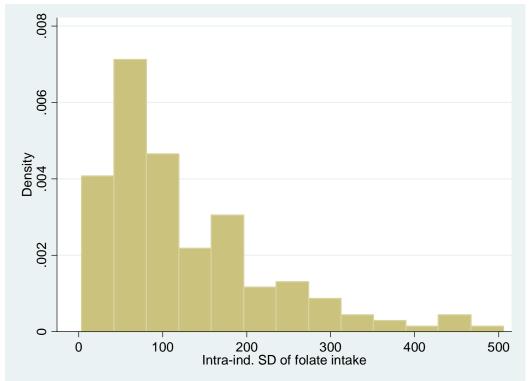



Figure 15. Intra-Individual SD of Vitamin B6 Intakes, All Women

Figure 16. Intra-Individual SD of Folate Intakes, All Women

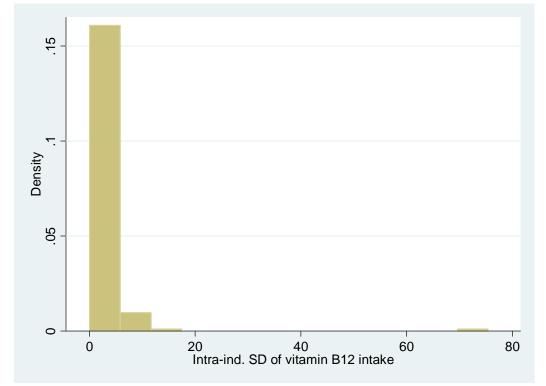
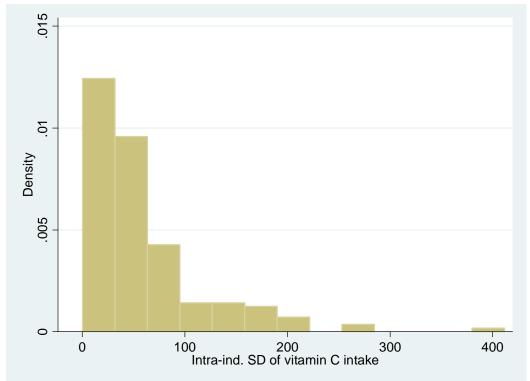



Figure 17. Intra-Individual SD of Vitamin B12 Intakes, All Women

Figure 18. Intra-Individual SD of Vitamin C Intakes, All Women

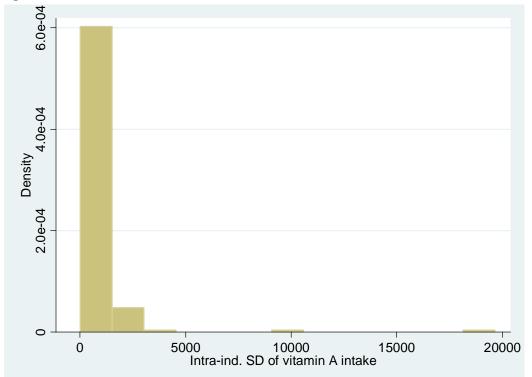
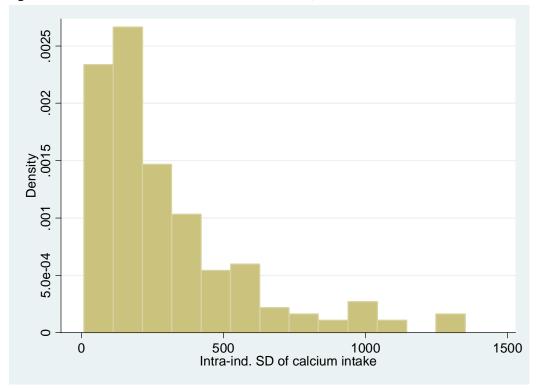



Figure 19. Intra-Individual SD of Vitamin A Intakes, All Women

Figure 20. Intra-Individual SD of Calcium Intakes, All Women

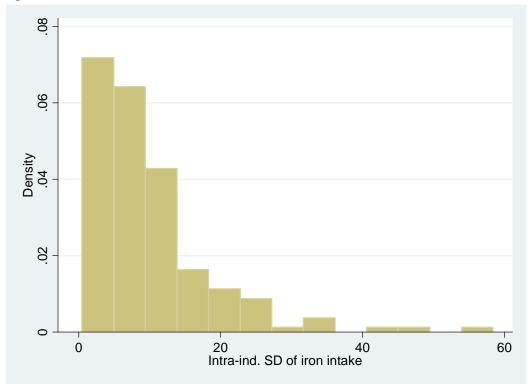
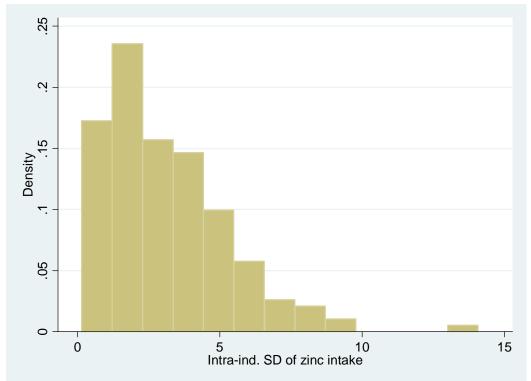



Figure 21. Intra-Individual SD of Iron Intakes, All Women

Figure 22. Intra-Individual SD of Zinc Intakes, All Women

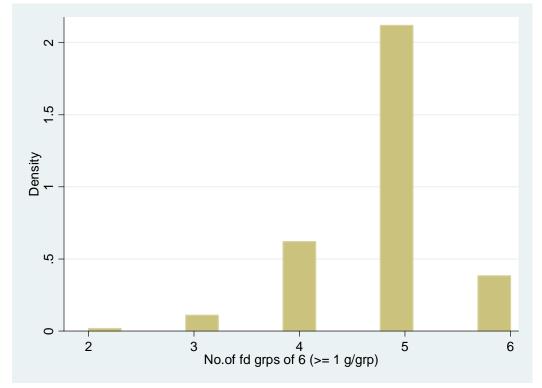
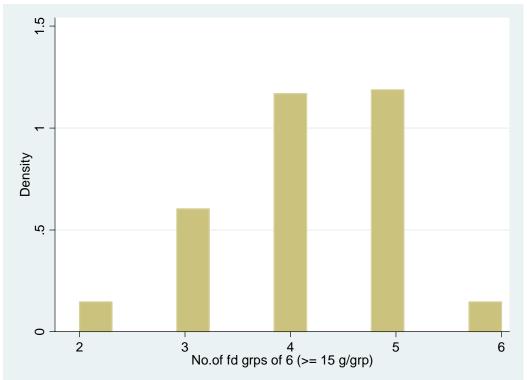



Figure 23. Distribution of Scores for FGI-6, All Women

Figure 24. Distribution of Scores for FGI-6R, All Women

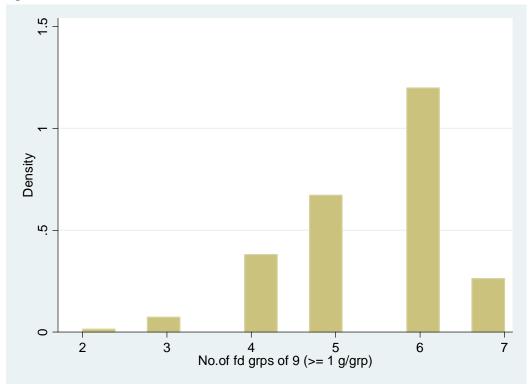
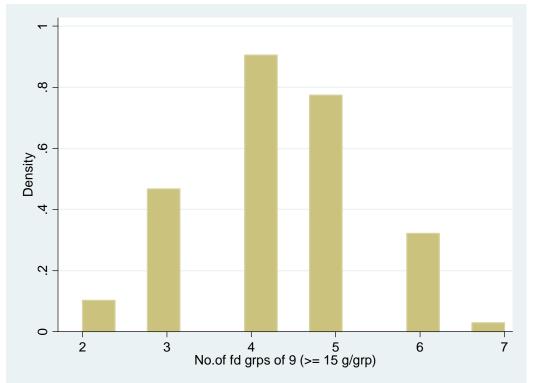



Figure 25. Distribution of Scores for FGI-9, All Women

Figure 26. Distribution of Scores for FGI-9R, All Women

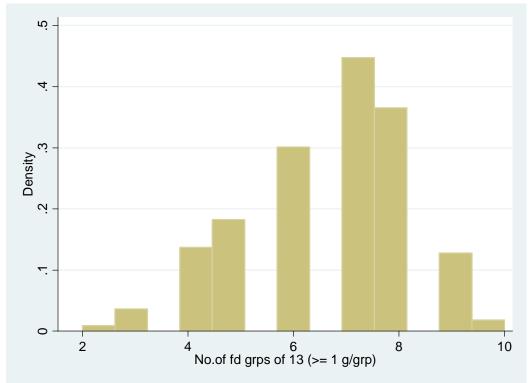
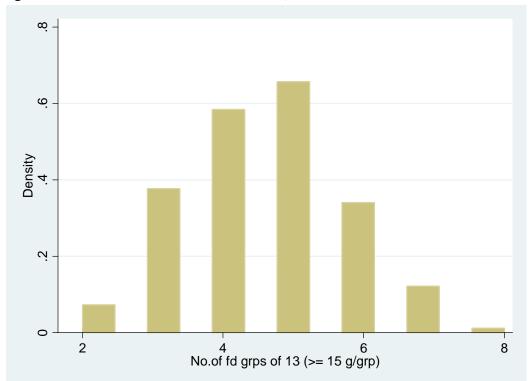



Figure 27. Distribution of Scores for FGI-13, All Women

Figure 28. Distribution of Scores for FGI-13R, All Women

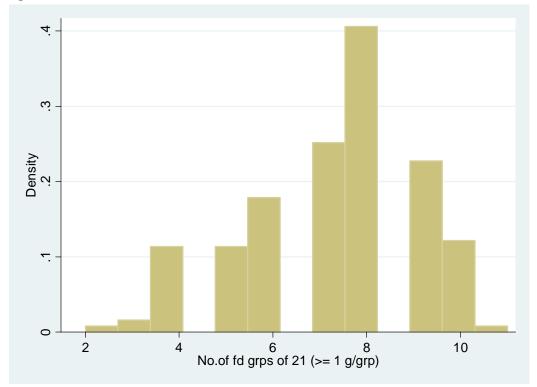
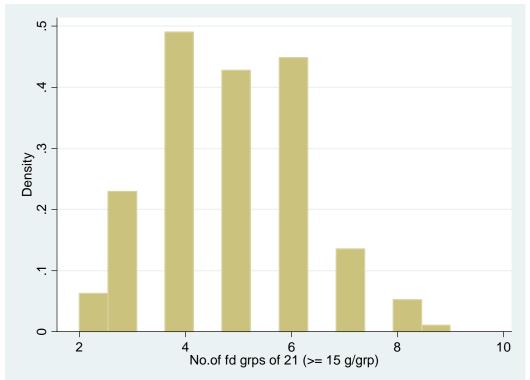
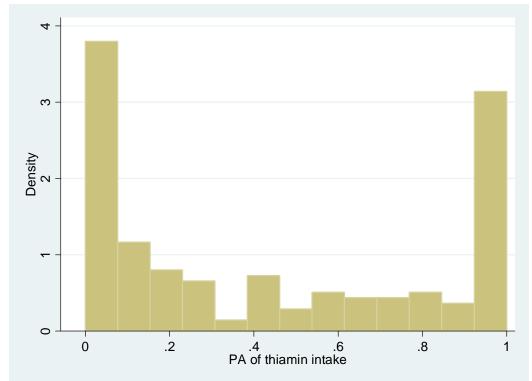



Figure 29. Distribution of Scores for FGI-21, All Women


Figure 30. Distribution of Scores for FGI-21R, All Women

Number	Diversity indicators										
of food groups eaten	FGI-6	FGI-6R	FGI-9	FGI-9R	FGI-13	FGI-13R	FGI-21	FGI-21R			
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
2 3	0.6	4.6	0.6	3.9	0.6	3.5	0.6	3.6			
3	3.3	19.1	2.6	18.6	2.2	18.2	0.9	12.6			
4	18.6	35.9	14.8	35.0	8.7	26.1	8.2	26.6			
5	66.2	36.2	26.6	29.1	10.4	30.5	7.3	23.1			
6	11.2	4.2	46.2	12.4	19.1	16.1	12.2	23.6			
6 7			9.1	0.9	27.3	5.3	18.2	6.8			
8			0.0	0.0	23.2	0.5	28.8	3.2			
9			0.0	0.0	7.7	0.0	15.1	0.5			
10					0.9	0.0	8.1	0.0			
11					0.0	0.0	0.5	0.0			
12					0.0	0.0	0.0	0.0			
13					0.0	0.0	0.0	0.0			
14							0.0	0.0			
15							0.0	0.0			
16							0.0	0.0			
17							0.0	0.0			
18							0.0	0.0			
19							0.0	0.0			
20							0.0	0.0			
21							0.0	0.0			

Table 6. Percent of Observation Days at Each Food Grou	p Diversity Score, All Women, R
--	---------------------------------

Figure 31. Distribution of PA for Thiamin, All Women

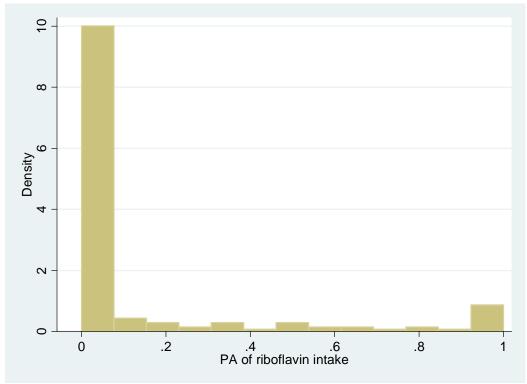
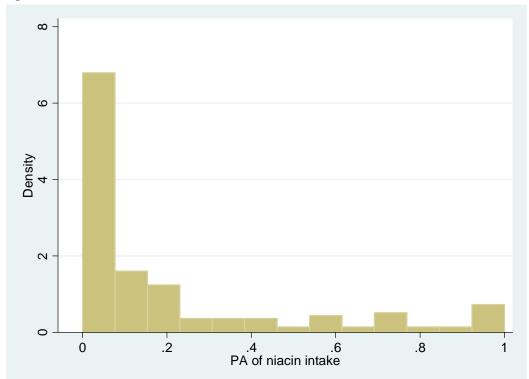



Figure 32. Distribution of PA for Riboflavin, All Women

Figure 33. Distribution of PA for Niacin, All Women

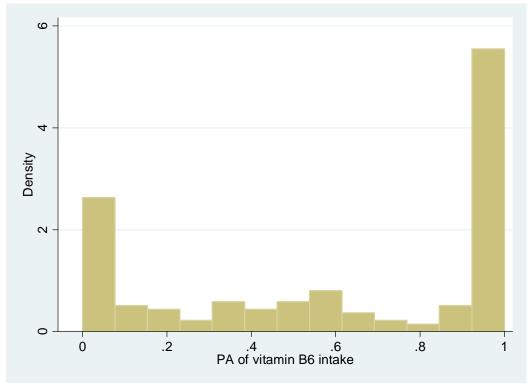
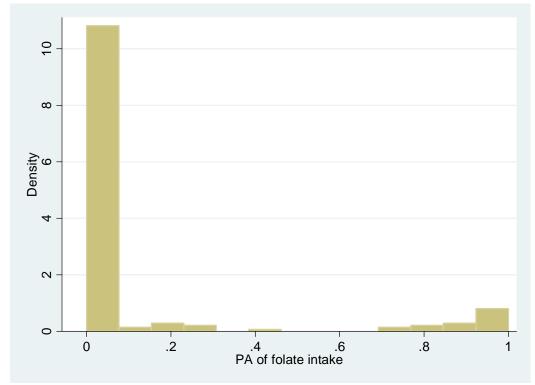



Figure 34. Distribution of PA for Vitamin B6, All Women

Figure 35. Distribution of PA for Folate, All Women

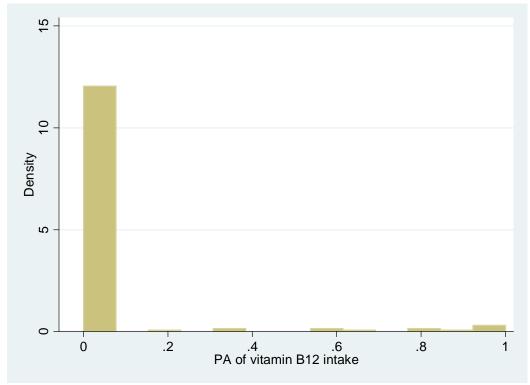
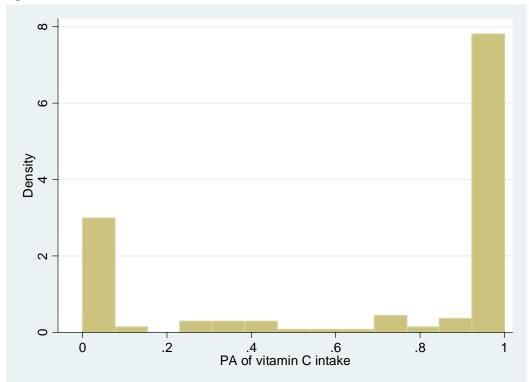



Figure 36. Distribution of PA for Vitamin B12, All Women

Figure 37. Distribution of PA for Vitamin C, All Women

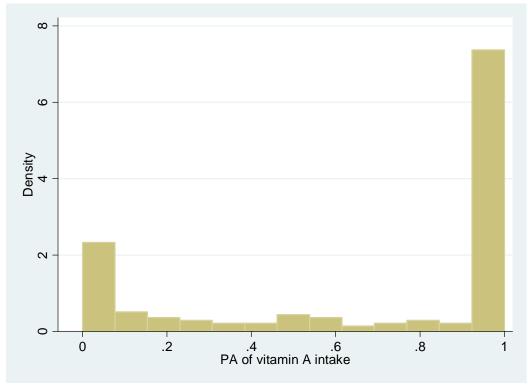
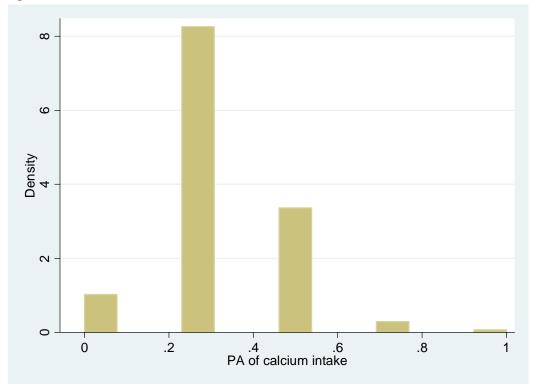



Figure 38. Distribution of PA for Vitamin A, All Women

Figure 39. Distribution of PA for Calcium, All Women

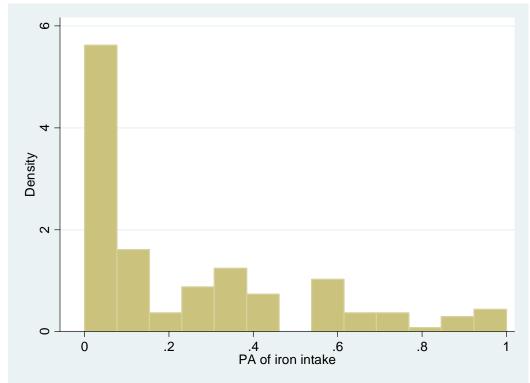
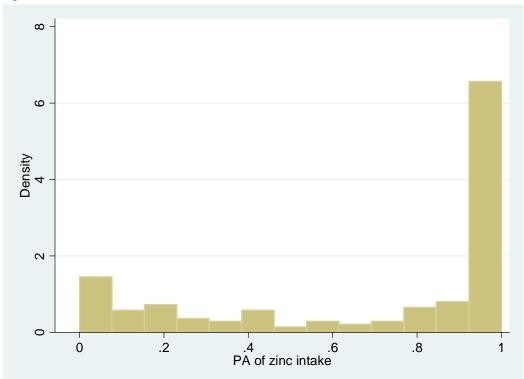



Figure 40. Distribution of PA for Iron, All Women

Figure 41. Distribution of PA for Zinc, All Women

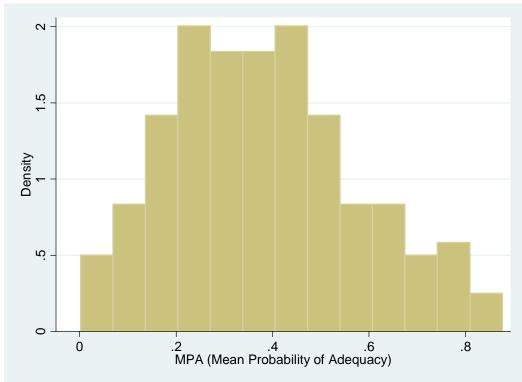


Figure 42. Distribution of MPA, All Women

Appendix 2. Tables and Figures, Non-Pregnant Non-Lactating Women

	n	Mean	SD	Median	Range
Age (year)	129	31.7	7.9	30.0	17.0-49.0
Height (cm)	126	163.3	6.2	163.0	150.0-182.0
Weight (kg)	125	63.1	12.0	61.7	38.2-102.1
BMI	125	23.7	4.2	23.2	16.1-37.1
Ever attended school	130	51.6			
% Lactating	130	0.0			
% Pregnant	130	0.0			
	n	Percent			
BMI <16	0	0.0			
BMI 16-16.9	4	3.4			
BMI 17-18.49	6	5.3			
BMI 18.5-24.9	74	58.1			
BMI 25-29.9	34	27.2			
BMI ≥ 30	7	5.9			

Table N1. Description of Sample, NPNL Women, R2

Table N2. Energy and Macronutrient Intakes, NPNL Women, R2

					Percent of
	Mean	SD	Median	Range	kcal
Energy (kcal)	2,234.7	837.1	2,077.6	903.4-5,242.1	
Protein (g)	59.4	31.2	52.8	15.8-257.1	10.8
Animal source (g)	15.3	27.7	8.9	0.0-242.7	2.8
Plant source (g)	44.1	20.8	41.4	9.8-123.7	8.0
Total carbohydrate (g)	371.3	154.2	337.5	90.5-904.4	66.4
Sugars (g)	75.7	69.5	58.1	5.0-334.4	13.6
Total fat (g)	54.3	36.1	43.9	5.1-234.0	21.7
Saturated fat (g)	_	_	—	-	-

Table N3a. Percent of Women Who Consumed 6 Major Food Groups, NPNL Women, R2

	≥1g	≥ 15 g
All starchy staples	100.0	100.0
All legumes and nuts	80.6	58.1
All dairy	18.8	18.8
Other animal source foods	93.9	72.1
Vitamin A-rich fruits and vegetables ^a	92.1	69.3
Other fruits and vegetables	97.6	95.1

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Table N3b. Percent of Women Who Consumed 9 Sub-Food Groups, NPNL Women, R2

	≥1 g	≥ 15 g
All starchy staples	100.0	100.0
All legumes and nuts	80.6	58.1
All dairy	18.8	18.8
Organ meat	0.0	0.0
Eggs	1.9	0.6
Flesh foods and other miscellaneous small animal protein	93.3	70.8
Vitamin A-rich dark green leafy vegetables ^a	76.6	50.6
Other vitamin A-rich vegetables and fruits ^a	71.4	35.7
Other fruits and vegetables	97.6	95.1

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

	≥1g	≥ 15 g
All starchy staples	100.0	100.0
All legumes and nuts	80.6	58.1
All dairy	18.8	18.8
Organ meat	0.0	0.0
Eggs	1.9	0.6
Small fish eaten whole with bones	47.2	5.7
All other flesh foods and miscellaneous small animal protein	80.7	66.0
Vitamin A-rich dark green leafy vegetables ^a	76.6	50.6
Vitamin A-rich deep yellow/orange/red vegetables ^a	59.0	4.9
Vitamin C-rich vegetables ^b	95.4	90.5
Vitamin A-rich fruits ^a	33.2	31.3
Vitamin C-rich fruits ^b	14.2	8.2
All other fruits and vegetables	53.4	20.3

Table N3c. Percent of Women Who Consumed 13 Sub-Food Groups, NPNL Women, R2

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g raw, taking into account retention factors. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect. ^b Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g *raw, taking into account retention*

factors.

Table N3d. Percent of Women Who Consumed 21 Sub-Food Groups, NPNL Women, R2

	≥1g	≥ 15 g
Grains and grain products	98.5	98.5
All other starchy staples	14.1	14.1
Cooked dry beans and peas	27.4	26.5
Soybeans and soy products	0.0	0.0
Nuts and seeds	75.4	39.7
Milk/yogurt	18.1	18.1
Cheese	0.6	0.6
Beef, pork, veal, lamb, goat, game meat	50.5	38.5
Organ meat	0.0	0.0
Chicken, duck, turkey, pigeon, guinea hen, game birds	1.8	1.8
Large whole fish/dried fish/shellfish and other seafood	54.8	36.8
Small fish eaten whole with bones	47.2	5.7
Insects, grubs, snakes, rodents and other small animal	0.0	0.0
Eggs	1.9	0.6
Vitamin A-rich dark green leafy vegetables ^a	76.6	50.6
Vitamin A-rich deep yellow/orange/red vegetables ^a	59.0	4.9
Vitamin C-rich vegetables ^b	95.4	90.5
All other vegetables	51.9	18.8
Vitamin A-rich fruits ^a	33.2	31.3
Vitamin C-rich fruits ^b	14.2	8.2
All other fruits	2.4	1.5

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g raw, taking into account retention factors. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

		All (n = 130)					Among those who consume				
Food group	Mean amount	Mean energy	Median amount	Median energy	Percent consuming	Mean amount	Mean energy	Median amount	Median energy		
	(g)	(kcal)	(g)	(kcal)		(g)	(kcal)	(g)	(kcal)		
All starchy staples	1,221.2	1,249.8	1,113.1	1,146.0	100.0	1,221.2	1,249.8	1,113.1	1,146.0		
All legumes and nuts	87.9	208.7	25.9	135.0	80.6	109.1	259.0	41.4	212.2		
All dairy	46.9	35.7	0.0	0.0	18.8	249.8	190.3	244.9	187.6		
Other animal source foods	57.9	135.1	28.0	71.8	93.9	61.7	143.8	31.1	76.4		
Vitamin A-rich fruits and vegetables ^a	155.3	102.0	60.9	30.9	92.1	168.6	110.7	72.2	36.0		
Other fruits and vegetables	113.4	52.6	87.7	36.2	97.6	116.2	53.9	88.6	38.2		

Table N4a. Summary of Food Group Intake (FGI-6), for all R2 Observation Days and for Days When the Food Was Consumed, NPNL Women

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Table N4b. Summary of Food Group Intake (FGI-9), for All R2 Observation Days and for Days When the Food Was Consumed, NPNL
Women

	All (n = 130)					Among those who consume			
Food group	Mean amount	Mean energy	Median amount	Median energy	Percent consuming	Mean amount	Mean energy	Median amount	Median energy
	(g)	(kcal)	(g)	(kcal)		(g)	(kcal)	(g)	(kcal)
All starchy staples	1,221.2	1,249.8	1,113.1	1,146.0	100.0	1,221.2	1,249.8	1,113.1	1,146.0
All legumes and nuts	87.9	208.7	25.9	135.0	80.6	109.1	259.0	41.4	212.2
All dairy	46.9	35.7	0.0	0.0	18.8	249.8	190.3	244.9	187.6
Organ meat	0.0	0.0	0.0	0.0	0.0	-	_	-	-
Eggs	0.8	1.2	0.0	0.0	1.9	43.6	62.9	9.2	14.5
Flesh foods and other miscellaneous small animal protein	57.1	133.9	28.0	71.8	93.3	61.2	143.5	31.0	74.8
Vitamin A-rich dark green leafy vegetables ^a	48.3	23.8	15.0	5.2	76.6	63.0	31.1	29.1	12.6
Other vitamin A-rich vegetables and fruits ^a	107.0	78.1	3.8	4.9	71.4	149.6	109.2	13.5	14.6
Other fruits and vegetables	113.4	52.6	87.7	36.2	97.6	116.2	53.9	88.6	38.2

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

	All (n = 130)					Among those who consume			
Food group	Mean amount	Mean energy	Median amount	Median energy	edian hergyPercent consumingMean amountMean energyMedian amountkcal)(g)(kcal)(g)146.0100.01,221.21,249.81,113.1 35.0 80.6 109.1259.041.4 0.0 18.8249.8190.3244.9 0.0 0.0 0.0 1.943.662.99.2 1.4 47.27.218.84.7 57.2 80.766.5154.834.6 5.2 76.663.031.129.1 2.2 59.06.06.43.8 23.6 95.496.637.777.5 0.0 33.2310.8223.3266.2	Median energy			
	(g)	(kcal)	(g)	(kcal)		(g)	(kcal)	(g)	(kcal)
All starchy staples	1,221.2	1,249.8	1,113.1	1,146.0	100.0	1,221.2	1,249.8	1,113.1	1,146.0
All legumes and nuts	87.9	208.7	25.9	135.0	80.6	109.1	259.0	41.4	212.2
All dairy	46.9	35.7	0.0	0.0	18.8	249.8	190.3	244.9	187.6
Organ meat	0.0	0.0	0.0	0.0	0.0	_	_	_	_
Eggs	0.8	1.2	0.0	0.0	1.9	43.6	62.9	9.2	14.5
Small fish eaten whole with bones	3.4	9.0	0.5	1.4	47.2	7.2	18.8	4.7	12.2
All other flesh foods and miscellaneous small animal protein	53.7	124.9	24.8	57.2	80.7	66.5	154.8	34.6	75.1
Vitamin A-rich dark green leafy vegetables ^a	48.3	23.8	15.0	5.2	76.6	63.0	31.1	29.1	12.6
Vitamin A-rich deep yellow/orange/red vegetables ^a	3.6	3.9	1.8	2.2	59.0	6.0	6.4	3.8	4.3
Vitamin C-rich vegetables ^b	92.2	36.0	72.2	23.6	95.4	96.6	37.7	77.5	24.2
Vitamin A-rich fruits ^a	103.4	74.3	0.0	0.0	33.2	310.8	223.3	266.2	175.8
Vitamin C-rich fruits ^b	8.7	6.7	0.0	0.0	14.2	60.9	46.7	18.0	20.0
All other fruits and vegetables	12.5	10.0	4.4	1.9	53.4	23.5	18.7	9.9	9.4

Table N4c. Summary of Food Group Intake (FGI-13), for All R2 Observation Days and for Days When the Food Was Consumed, NPNL Women

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE

values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect. ^b Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g *raw, taking into account retention factors*.

Table N4d. Summary of Food Group Intake (FGI-21), for All R2 Observation Days and for Days When the Food Was Consumed, NPNL	
Women	

			All (n = 130		Among those who consume				
	Mean	Mean	Median	Median	Percent	Mean	Mean	Median	Median
Food group	amount	energy	amount	energy	consuming	amount	energy	amount	energy
Oraina and susia anadusta	(g)	(kcal)	(g)	(kcal)	00 5	(g)	(kcal)	(g)	(kcal)
Grains and grain products	1,154.2	1,177.9	1,027.7	1,106.5	98.5	1,172.1	1,196.1	1,037.3	1,116.5
All other starchy staples	66.9	71.9	0.0	0.0	14.1	475.1	510.2	187.0	425.9
Cooked dry beans and peas	67.7	95.6	0.0	0.0	27.4	246.9	348.8	223.6	315.9
Soybeans and soy products	0.0	0.0	0.0	0.0	0.0	-	-	-	-
Nuts and seeds	20.2	113.1	6.9	35.4	75.4	26.8	150.0	17.5	99.6
Milk/yogurt	46.8	35.4	0.0	0.0	18.1	258.0	195.0	244.9	187.6
Cheese	0.1	0.3	0.0	0.0	0.6	15.7	54.7	15.7	54.7
Beef, pork, veal, lamb, goat, game meat	23.6	67.1	1.0	3.1	50.5	46.7	132.9	23.4	60.8
Organ meat	0.0	0.0	0.0	0.0	0.0	-	-	-	-
Chicken, duck, turkey, pigeon, guinea hen, game birds	7.6	14.9	0.0	0.0	1.8	428.6	839.5	15.9	21.9
Large whole fish/dried fish/shellfish and other seafood	22.4	42.9	5.1	6.7	54.8	40.9	78.2	25.9	39.9
Small fish eaten whole with bones	3.4	9.0	0.5	1.4	47.2	7.2	18.8	4.7	12.2
Insects, grubs, snakes, rodents and other small animal	0.0	0.0	0.0	0.0	0.0	-	-	-	-
Eggs	0.8	1.2	0.0	0.0	1.9	43.6	62.9	9.2	14.5
Vitamin A-rich dark green leafy vegetables ^a	48.3	23.8	15.0	5.2	76.6	63.0	31.1	29.1	12.6
Vitamin A-rich deep yellow/orange/red vegetables ^a	3.6	3.9	1.8	2.2	59.0	6.0	6.4	3.8	4.3
Vitamin C-rich vegetables ^b	92.2	36.0	72.2	23.6	95.4	96.6	37.7	77.5	24.2
All other vegetables	11.1	7.7	3.2	1.6	51.9	21.4	14.8	9.9	9.0
Vitamin A-rich fruits ^a	103.4	74.3	0.0	0.0	33.2	310.8	223.3	266.2	175.8
Vitamin C-rich fruits ^b	8.7	6.7	0.0	0.0	14.2	60.9	46.7	18.0	20.0
All other fruits	1.4	2.3	0.0	0.0	2.4	59.8	96.0	51.0	62.2

^a Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect. ^b Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g *raw, taking into account retention factors*.

	Number of food groups				
Indicator	and level	Mean	SD	Median	Range
FGI-6	6 major food groups	4.8	0.6	5.0	3-6
FGI-6R ^a	6 major food groups	4.1	1.0	4.0	2-6
FGI-9	9 food sub-groups	5.4	1.0	6.0	3-7
FGI-9R ^a	9 food sub-groups	4.3	1.1	4.0	2-7
FGI-13	13 food sub-groups	6.6	1.5	7.0	3-10
FGI-13R ^a	13 food sub-groups	4.6	1.3	5.0	2-8
FGI-21	21 food sub-groups	7.2	1.7	7.0	3-10
FGI-21R ^a	21 food sub-groups	4.9	1.5	5.0	2-9

Table N5. Diversity Scores for Various Diversity Indicators, NF

^a "R" indicates that at least 15 g must be consumed in order for the food group/sub-group to —ount" in the score.

Table N6. Percent of Observation Days at Each Food Group Diversity Score, NPNL Women, R2 Number of Diversity indicators

Number of				Diversity	indicators			
food groups eaten	FGI-6	FGI-6R	FGI-9	FGI-9R	FGI-13	FGI-13R	FGI-21	FGI-21R
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	4.6	0.0	3.7	0.0	3.0	0.0	3.3
3	3.7	22.1	3.7	21.4	3.0	19.9	1.3	14.8
4	20.2	33.8	14.6	32.0	7.9	25.1	8.1	26.4
5	65.6	34.6	28.9	28.6	11.2	29.7	6.9	18.9
6	10.5	4.9	43.4	13.1	20.6	15.7	14.6	25.0
7			9.4	1.3	27.7	5.8	19.9	7.4
8			0.0	0.0	20.2	0.6	25.8	3.6
9			0.0	0.0	8.9	0.0	15.2	0.6
10					0.6	0.0	8.2	0.0
11					0.0	0.0	0.0	0.0
12					0.0	0.0	0.0	0.0
13					0.0	0.0	0.0	0.0
14							0.0	0.0
15							0.0	0.0
16							0.0	0.0
17							0.0	0.0
18							0.0	0.0
19							0.0	0.0
20							0.0	0.0
21							0.0	0.0

		N	umber of fo	od groups	eaten				
	1	2	3	4	5	6			
Percent (number) ^a of observation days	0.0	0.0	3.7	20.2	65.6	10.5			
at each diversity score	(0)	(0)	(5)	(27)	(83)	(15)			
Food groups	Percen	t of obser	vation days	on which e	ach food gi	roup was			
i ood groups	consumed								
All starchy staples	_	_	100.0	100.0	100.0	100.0			
All legumes and nuts	_	_	65.5	39.0	91.1	100.0			
All dairy	_	_	0.0	7.5	10.3	100.0			
Other animal source foods	_	_	0.0	88.1	100.0	100.0			
Vitamin A-rich fruits and vegetables ^b	_	_	58.6	73.0	98.6	100.0			
Other fruits and vegetables	_	_	75.9	92.5	100.0	100.0			

Table N7a. Percent of Observation Days on Which Different Food Groups Were Consumed, By Food Group Diversity Score, NPNL Women, R2 (FGI-6 - 1 g Minimum)

^a Percents are weighted according to the sample design; however, the number of observations is unweighted. ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Table N7b. Percent of Observation Days on Which Different Food Groups Were Consumed, By Food Group Diversity Score, NPNL Women, R2 (FGI-6R - 15 g Minimum)

	Number of food groups eaten							
-	1	2	3	4	5	6		
Percent (number) ^a of observation days	0.0	4.6	22.1	33.8	34.6	4.9		
at each diversity score	(0)	(6)	(28)	(44)	(45)	(7)		

Food groups	Percent of observation days on which each food group was consumed								
All starchy staples	-	100.0	100.0	100.0	100.0	100.0			
All legumes and nuts	_	13.9	42.0	42.9	83.2	100.0			
All dairy	_	0.0	0.0	17.3	23.1	100.0			
Other animal source foods	_	0.0	36.2	72.6	100.0	100.0			
Vitamin A-rich fruits and vegetables ^b	_	19.4	31.6	69.2	95.6	100.0			
Other fruits and vegetables	-	66.7	90.2	98.1	98.2	100.0			

^a Percents are weighted according to the sample design; however, the number of observations is unweighted. ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

	Number of food groups eaten									
	1	2	3	4	5	6	7	8	9	
Percent (number) ^a of observation days at	0.0	0.0	3.7	14.6	28.9	43.4	9.4	0.0	0.0	
each diversity score	(0)	(0)	(5)	(19)	(36)	(56)	(14)	(0)	(0)	
	Pe	ercent	of observ	vation da	ivs on w	hich eac	h food g	roup w	as	
Food groups	Percent of observation days on which each food group was consumed									
All starchy staples	_	_	100.0	100.0	100.0	100.0	100.0	_	_	
All legumes and nuts	_	_	65.5	52.2	74.1	91.5	100.0	_	_	
All dairy	_	_	0.0	10.4	10.5	14.0	86.5	-	_	
Organ meat	_	_	0.0	0.0	0.0	0.0	0.0	-	_	
Eggs	_	_	0.0	0.0	2.2	0.0	13.5	-	_	
Flesh foods and other miscellaneous small animal protein	-	-	0.0	83.5	97.8	100.0	100.0	-	-	
Vitamin A-rich dark green leafy vegetables ^b	-	-	41.4	20.9	68.9	98.5	100.0	-	-	
Other vitamin A-rich vegetables and fruits ^b	_	_	17.2	37.4	49.6	95.9	100.0	_	_	
Other fruits and vegetables	-	-	75.9	95.7	96.9	100.0	100.0	-	_	

Table N7c. Percent of Observation Days on Which Different Food Groups Were Consumed, By
Food Group Diversity Score, NPNL Women, R2 (FGI-9 - 1 g Minimum)

^a Percents are weighted according to the sample design; however, the number of observations is unweighted.

^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Table N7d. Percent of Observation Days on Which Different Food Groups Were Consumed, By Food Group Diversity Score, NPNL Women, R2 (FGI-9R - 15 g Minimum)

	Number of food groups eaten									
	1	2	3	4	5	6	7	8	9	
Percent (number) ^a of observation days at each diversity score	0.0 (0)	3.7 (5)	21.4 (27)	32.0 (42)	28.6 (37)	13.1 (17)	1.3 (2)	0.0 (0)	0.0 (0)	

ood groups	Percent of observation days on which each food group was consumed										
All starchy staples	_	100.0	100.0	100.0	100.0	100.0	100.0	_	-		
All legumes and nuts	_	17.2	40.2	44.4	76.4	88.3	100.0	_	_		
All dairy	_	0.0	0.0	18.3	20.4	44.7	100.0	_	_		
Organ meat	_	0.0	0.0	0.0	0.0	0.0	0.0	_	-		
Eggs	_	0.0	0.0	0.0	2.2	0.0	0.0	_	-		
Flesh foods and other miscellaneous small animal protein	_	0.0	37.3	71.8	89.3	100.0	100.0	-	_		
Vitamin A-rich dark green leafy vegetables ^b	_	0.0	19.5	44.4	68.0	88.3	100.0	-	_		
Other vitamin A-rich vegetables and fruits ^b	_	0.0	14.2	23.0	45.8	83.5	100.0	_	-		
Other fruits and vegetables	_	82.8	88.8	98.0	97.8	95.1	100.0	_	_		

^a Percents are weighted according to the sample design; however, the number of observations is unweighted.

^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

	Number of food groups eaten													
	1	2	3	4	5	6	7	8	9	10	11	12	13	
Percent (number) ^a of observation days at	0.0	0.0	3.0	7.9	11.2	20.6	27.7	20.2	8.9	0.6	0	0	0	
each diversity score	(0)	(0)	(4)	(10)	(16)	(26)	(36)	(25)	(12)	(1)	(0)	(0)	(0)	
Food groups	Percent of observation days on which each food group was consumed													
All starchy staples	_	_	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	_	_	_	
All legumes and nuts	_	_	79.2	66.1	35.2	71.6	95.4	91.2	100.0	100.0	_	_	_	
All dairy	_	_	0.0	11.3	17.0	19.1	17.0	23.9	28.6	0.0	_	_	_	
Organ meat	_	_	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_	_	_	
Eggs	_	_	0.0	0.0	5.7	0.0	2.3	0.0	0.0	100.0	_	_	_	
Small fish eaten whole with bones	_	_	0.0	22.6	31.8	24.7	59.6	61.0	82.9	100.0	_	_	_	
All other flesh foods and miscellaneous small animal protein	_	_	0.0	46.8	64.8	82.7	85.8	100.0	100.0	0.0	_	_	_	
Vitamin A-rich dark green leafy vegetables ^b	_	_	50.0	30.6	42.0	71.0	89.0	95.6	100.0	100.0	_	_	_	
Vitamin A-rich deep yellow/orange/red vegetables ^b	-	_	0.0	22.6	53.4	51.9	49.1	86.8	100.0	100.0	-	_	-	
Vitamin C-rich vegetables ^c	_	_	70.8	80.6	92.0	100.0	95.4	100.0	100.0	100.0	_	_	_	
Vitamin A-rich fruits ^b	_	_	0.0	8.1	33.0	25.3	26.6	49.1	65.7	100.0	_	_	_	
Vitamin C-rich fruits ^c	_	_	0.0	0.0	0.0	13.0	19.7	10.7	37.1	100.0	_	_	_	
All other fruits and vegetables	_	_	0.0	11.3	25.0	40.7	60.1	81.8	85.7	100.0	_	_	_	

Table N7e. Percent of Observation Days on Which Different Food Groups Were Consumed, By Food Group Diversity Score, NPNL Women, R2 (FGI-13 - 1 g Minimum)

 ^a Percents are weighted according to the sample design; however, the number of observations is unweighted.
 ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g raw, taking into account retention factors. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

	Number of food groups eaten													
	1	2	3	4	5	6	7	8	9	10	11	12	13	
Percent (number) ^a of observation days at	0.0	3.0	19.9	25.1	29.7	15.7	5.8	0.6	0.0	0.0	0	0	0	
each diversity score	(0)	(4)	(25)	(34)	(38)	(20)	(8)	(1)	(0)	(0)	(0)	(0)	(0)	
Food groups	Percent of observation days on which each food group was consumed													
All starchy staples	_	100.0	100.0	100.0	100.0	100.0	100.0	100.0	_	_	_	_	-	
All legumes and nuts	_	20.8	43.3	44.9	62.8	79.0	100.0	100.0	_	_	_	_	_	
All dairy	_	0.0	4.5	13.6	16.7	44.4	32.6	100.0	_	_	_	_	_	
Drgan meat	_	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_	_	_	_	_	
Eggs	_	0.0	0.0	0.0	2.1	0.0	0.0	0.0	_	_	_	_	_	
Small fish eaten whole with bones	_	0.0	0.0	6.1	3.0	21.0	0.0	0.0	_	_	_	_	_	
All other flesh foods and miscellaneous small animal protein	-	0.0	32.5	56.6	79.9	100.0	89.1	100.0	-	-	-	_	_	
/itamin A-rich dark green leafy vegetables ^b	_	0.0	21.0	52.0	61.1	59.7	89.1	100.0	_	_	_	_	_	
/itamin A-rich deep yellow/orange/red	-	0.0	0.0	0.0	11.5	9.7	0.0	0.0	_	-	_	_	_	
Vitamin C-rich vegetables ^c	_	50.0	79.0	94.9	95.7	96.0	89.1	100.0	_	_	_	_	_	
/itamin A-rich fruits ^b	_	0.0	12.1	17.2	32.5	58.1	89.1	100.0	_	_	_	_	_	
/itamin C-rich fruits ^c	_	0.0	4.5	3.5	7.3	9.7	47.8	0.0	_	_	_	_	_	
All other fruits and vegetables	_	29.2	3.2	11.1	27.4	22.6	63.0	100.0	_	_	_	_	_	

Table N7f. Percent of Observation Days on Which Different Food Groups Were Consumed, By Food Group Diversity Score, NPNL Women, R2 (FGI-13R - 15 g Minimum)

^a Percents are weighted according to the sample design; however, the number of observations is unweighted.

^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Table N7g. Percent of Observation Days on Which Different Food Groups Were Consumed, By Food Group Diversity Score, NPNL Women, R2 (FGI-21 - 1 g Minimum)

<u>.</u>	Number of food groups eaten																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Percent (number) ^a of observation days	0.0	0.0	1.3	8.1	6.9	14.6	19.9	25.8	15.2	8.2	0.0	0.0	0	0	0	0	0	0	0	0	0
at each diversity score	(0)	(0)	(2)	(10)	(10)	(19)	(25)	(33)	(20)	(11)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
Food groups					Р	ercent	of obs	ervatio	n days	on whi	ch ead	ch food	d grou	p was	cons	umed					
Grains and grain products	_	_	100.0	100.0	87.0	100.0	96.8	100.0			_	_	_	-	_	_	_	_	_	_	_
All other starchy staples	_	_	0.0	0.0	22.2	8.7	17.2	10.8	21.7	21.5	_	_	_	_	_	_	_	_	_	_	_
Cooked dry beans and peas	_	_	50.0	37.5	0.0	22.6	17.8	31.5	25.8	58.5	_	_	_	_	_	_	_	_	_	_	_
Soybeans and soy products	_	_	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_	_	_	_	_	_	_	_	_	_	_
Nuts and seeds	_	_	0.0	62.5	40.7	43.5	87.3	78.8	100.0	100.0	_	_	_	_	_	_	_	_	_	_	_
Milk/yogurt	_	_	0.0	10.9	9.3	19.1	10.8	33.0	16.7	7.7	_	_	_	_	_	_	_	_	_	_	_
Cheese	_	_	0.0	0.0	0.0	0.0	0.0	2.5	0.0	0.0	_	_	_	_	_	_	_	_	_	_	_
Beef, pork, veal, lamb, goat, game meat	-	-	0.0	0.0	40.7	33.9	51.6	58.6	70.0	81.5	-	_	-	-	-	-	-	-	_	-	_
Organ meat	_	_	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_	_	_	_	_	_	_	_	_	_	_
Chicken, duck, turkey, pigeon, guinea hen, game birds	-	-	0.0	0.0	13.0	0.0	0.0	3.4	0.0	0.0	-	-	-	-	-	-	-	-	_	-	_
Large whole fish/dried fish/shellfish and other seafood	_	_	0.0	26.6	27.8	56.5	45.9	63.1	74.2	70.8	_	-	_	-	_	_	_	_	_	_	_
Small fish eaten whole with bones	_	_	0.0	21.9	13.0	40.9	43.3	47.8	75.8	73.8	_	_	_	_	_	_	_	_	_	_	_
Insects, grubs, snakes, rodents and other small animal	_	_	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_	_	_	-	_	_	_	_	_	_	_
Eggs	_	_	0.0	0.0	9.3	0.0	3.2	0.0	0.0	7.7	_	_	_	_	_	_	_	_	_	_	_
Vitamin A-rich dark green leafy vegetables ^b	_	_	50.0	40.6	50.0	44.3	91.1	84.7	95.8	100.0	_	-	_	-	_	_	_	_	_	_	_
Vitamin A-rich deep yellow/orange/red vegetables	_	_	0.0	10.9	59.3	64.3	35.7	68.5	88.3	78.5	_	-	_	-	_	_	_	_	_	_	_
Vitamin C-rich vegetables ^c	_	_	100.0	78.1	77.8	100.0	100.0	95.1	100.0	100.0	_	_	_	_	_	_	_	_	_	_	_
All other vegetables	_	_	0.0	10.9	18.5	34.8	49.7	60.6	71.7	100.0	_	_	_	_	_	_	_	_	_	_	_
Vitamin A-rich fruits ^b	_	_	0.0	0.0	31.5	25.2	27.4	44.8	30.0	70.8	_	_	_	_	_	_	_	_	_	_	_
Vitamin C-rich fruits ^c	_	_	0.0	0.0	0.0	6.1	17.8	14.3	30.0	18.5	_	_	_	_	_	_	_	_	_	_	_
All other fruits	_	_	0.0	0.0	0.0	0.0	4.5	2.5	0.0	10.8	_	_	_	_	_	_	_	_	_	_	_

^a Percents are weighted according to the sample design; however, the number of observations is unweighted.

^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

	Number of food groups eaten 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Dereent (number) ^a of observation dove	0.0	3.3	14.8	26.4	18.9	25.0	7.4	3.6	0.6	0.0	0.0	0.0	0	0	0	0	0	0	0	0	0
Percent (number) ^a of observation days															-			-	-		•
at each diversity score	(0)	(4)	(19)	(34)	(25)	(33)	(10)	(4)	(1)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
Food groups					Ρ	ercent	of obs	ervatio	n days	on wh	ich ead	ch foo	d grou	p was	cons	umed					
Grains and grain products	-	100.0	100.0	96.6	96.6	100.0	100.0	100.0	100.0	-	-	_	_	-	-	_	_	_	_	_	_
All other starchy staples	_	0.0	4.3	11.5	10.1	19.8	24.1	50.0	0.0	_	_	_	_	_	_	_	_	_	_	_	_
Cooked dry beans and peas	_	19.2	34.2	17.3	11.4	36.0	32.8	75.0	0.0	_	_	_	_	_	_	_	_	_	_	_	_
Soybeans and soy products	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_	_	_	_	_	_	_	_	_	_	_	_
Nuts and seeds	_	0.0	10.3	29.3	59.7	40.1	67.2	100.0	100.0	_	_	_	_	_	_	_	_	_	_	_	_
Milk/yogurt	-	26.9	0.0	10.6	8.1	34.5	50.0	0.0	100.0	_	_	_	_	_	_	_	_	_	_	_	_
Cheese	-	0.0	0.0	0.0	0.0	2.5	0.0	0.0	0.0	_	_	_	_	_	_	_	_	_	_	_	_
Beef, pork, veal, lamb, goat, game meat	-	0.0	14.5	24.0	50.3	53.8	50.0	75.0	100.0	_	-	-	-	-	-	-	-	-	-	-	_
Organ meat	_	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_	_	_	_	_	_	_	_	_	_	_	_
Chicken, duck, turkey, pigeon, guinea		0.0	0.0	2.4	0.0	2.0	0.0	0.0	0.0												
hen, game birds	-	0.0	0.0	3.4	0.0	3.6	0.0	0.0	0.0	_	_	_	_	-	_	_	-	-	_	-	_
Large whole fish/dried fish/shellfish and other seafood	_	0.0	4.3	30.3	38.9	51.8	62.1	75.0	100.0	_	_	_	_	_	_	_	_	_	_	_	_
Small fish eaten whole with bones		0.0	0.0	5.8	0.0	13.2	0.0	25.0	0.0												
Insects, grubs, snakes, rodents and	-									_	_	_	_	_	_	_	_	_	_	_	_
other small animal	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	-	-	_	-	-	-	-	-	-	_	—
Eggs	-	0.0	0.0	0.0	3.4	0.0	0.0	0.0	0.0	_	_	-	-	_	-	_	_	_	_	_	_
Vitamin A-rich dark green leafy vegetables ^b	-	0.0	28.2	45.7	58.4	59.4	70.7	75.0	100.0	_	-	-	-	-	-	-	-	-	_	-	_
Vitamin A-rich deep yellow/orange/red vegetables ^b	-	0.0	0.0	0.0	8.1	11.2	8.6	0.0	0.0	-	-	-	-	-	-	-	-	-	_	-	_
Vitamin C-rich vegetables ^c	_	26.9	82.1	97.6	93.3	92.4	91.4	100.0	100.0	_	_	_	_	_	_	_	_	_	_	_	_
All other vegetables	_	26.9	4.3	8.2	26.8	15.7	50.0	50.0	100.0	_	_	_	_	_	_	_	_	_	_	_	_
Vitamin A-rich fruits ^b	_	0.0	12.0	13.9	30.2	54.8	55.2	50.0	100.0	_	_	_	_	_	_	_	_	_	_	_	_
Vitamin C-rich fruits ^c	_	0.0	6.0	5.8	4.7	8.6	25.9	25.0	0.0	_	_	_	_	_	_	_	_	_	_	_	_
All other fruits	_	0.0	0.0	0.0	0.0	2.5	12.1	0.0	0.0	_		_	_	_	_	_	_	_	_	_	_

Table N7h. Percent of Observation Days on Which Different Food Groups Were Consumed, By Food Group Diversity Score, NPNL Women, R2 (FGI-21R - 15 g Minimum)

^a Percents are weighted according to the sample design; however, the number of observations is unweighted.

^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Nutrient	Mean	SD	Median	EAR ^b	SD ^b	PA (Mean)	PA (Median)	Lambda (Box-Cox transformation) ⁶
Energy	2,234.75	837.05	2,077.59					
Protein (All Sources) (% of kcal)	10.82	4.05	10.31					
Protein from animal sources (% of kcal)	2.83	4.24	1.62					
Total carbohydrate (% of kcal)	66.37	11.32	67.25					
Sugars (% of kcal)	13.59	11.18	11.08					
Total fat (% of kcal)	21.74	10.32	21.28					
Saturated fat (% of kcal)								
Thiamin (mg/d)	1.03	0.45	0.92	0.9	0.09	0.49	0.44	0.268
Riboflavin (mg/d)	0.79	0.48	0.67	0.9	0.09	0.16	0.00	0.035
Niacin (mg/d)	9.70	5.76	8.39	11	1.65	0.19	0.05	0.062
Vitamin B6 (mg/d)	1.57	0.88	1.33	1.1	0.11	0.70	0.95	0.152
Folate (µg/d)	247.32	185.93	194.40	320	32	0.15	0.00	0.171
Vitamin B12 (µg/d)	1.05	1.96	0.41	2.0	0.2	0.06	0.00	0.128
Vitamin C (mg/d)	90.47	100.41	55.15	30	3.0	0.70	1.00	0.172
Vitamin A (RE/d)	853.47	1,015.55	515.14	270	54	0.73	1.00	0.099
Calcium (mg/d)	539.75	461.47	394.09	d	d	0.30	0.25	0.068
Iron (mg/d)	23.17	13.62	20.39	See tables A6-2 &	k A6-3	0.15	0.07	0.085
Zinc (mg/d)	9.27	3.76	8.49	15% bioavail: 6.67	1.67	0.70	0.89	0.308
MPA across 11 micronutrients	0.39	0.20	0.38					

Table N8. Mean and Median Nutrient Intake and PA, NPNL Women ^a

^a Mean and median nutrient intakes are for second observation day; PA are based on estimated usual intake, calculated using repeat observations for a subset of the sample.

^b EAR and SD are presented for the predominant physiological group i.e., NPNL women (19-65 years); However, the sample also include adolescent girls (2.3 percent). See table A6-1 for sources of data.

^c This documents the transformation parameters selected for each nutrient. The power transformations result in approximately normal distributions. ^d There is no EAR and no SD for calcium; 1,000 mg is the Adequate Intake (AI).

Food groups (%)	Energy	Protein	СНО	Total fat	Thiamin	Riboflavin	Niacin	Vitamin B6	Folate	Vitamin B12	Vitamin C	Vitamin A	Calcium	Iron	Zinc
All starchy staples	55.7	48.0	72.8	12.1	54.4	30.8	32.3	44.0	29.3	0.0	8.3	2.5	15.2	37.5	61.1
All legumes and nuts	9.6	18.1	5.5	20.3	20.5	12.9	23.9	7.0	26.6	0.0	2.3	1.4	11.1	17.3	16.3
All dairy	1.7	2.5	1.4	2.6	1.8	6.3	2.2	1.6	1.6	9.1	1.8	2.4	7.8	1.5	2.3
Other animal source foods	6.3	20.4	0.0	16.1	5.2	8.7	12.9	8.0	2.4	73.4	0.3	2.3	13.1	7.3	9.9
Vitamin A-rich fruits /vegetables ^b	4.6	5.5	5.6	2.2	7.9	24.1	12.2	24.6	20.8	0.0	38.2	70.3	31.8	20.9	4.8
Other fruits and vegetables	2.6	3.4	2.8	1.9	7.1	10.4	10.9	10.7	13.8	0.0	47.1	19.4	17.6	13.2	4.7

Table N9a. Percent Contribution of Food Groups (FGI-6) to Intake of Energy, Protein and Nutrients, NPNL Women, R2 ^a

^a Percents may not sum to 100 due to nutrient contributions from foods not included in any of the groups comprising the diversity indicators (e.g., fats, sweets,

alcohol). ^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

	Energy	Protein	СНО	Total fat	Thiamin	Riboflavin	Niacin	itamin B6	Folate	Vitamin B12	itamin C	itamin A	Calcium	Iron	Zinc
Food groups (%)				F	F	R		i>		-	>	>	Ũ		
All starchy staples	55.7	48.0	72.8	12.1	54.4	30.8	32.3	44.0	29.3	0.0	8.3	2.5	15.2	37.5	61.1
All legumes and nuts	9.6	18.1	5.5	20.3	20.5	12.9	23.9	7.0	26.6	0.0	2.3	1.4	11.1	17.3	16.3
All dairy	1.7	2.5	1.4	2.6	1.8	6.3	2.2	1.6	1.6	9.1	1.8	2.4	7.8	1.5	2.3
Organ meat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Eggs	0.1	0.2	0.0	0.2	0.1	0.2	0.0	0.0	0.1	0.9	0.0	0.1	0.0	0.1	0.2
Flesh foods and other miscellaneous small animal protein	6.2	20.2	0.0	15.9	5.1	8.6	12.9	7.9	2.3	72.5	0.3	2.2	13.1	7.2	9.7
Vitamin A-rich dark green leafy vegetables	1.1	4.0	1.1	0.7	3.9	16.9	6.3	15.3	16.0	0.0	15.2	40.4	28.2	14.5	3.2
Other vitamin A-rich vegetables and fruits ^b	3.5	1.5	4.5	1.5	4.0	7.3	5.9	9.3	4.8	0.0	23.0	29.9	3.6	6.4	1.6
Other fruits and vegetables	2.6	3.4	2.8	1.9	7.1	10.4	10.9	10.7	13.8	0.0	47.1	19.4	17.6	13.2	4.7

Table N9b. Percent Contribution of Food Groups (FGI-6) to Intake of Energy, Protein and Nutrients, NPNL Women, R2 ^a

^a Percents may not sum to 100 due to nutrient contributions from foods not included in any of the groups comprising the diversity indicators (e.g., fats, sweets, alcohol).

^b Vitamin A-rich fruits and vegetables are defined as those with >120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Food groups (%)	Energy	Protein	СНО	Total fat	Thiamin	Riboflavin	Niacin	Vitamin B6	Folate	Vitamin B12	Vitamin C	Vitamin A	Calcium	Iron	Zinc
All starchy staples	55.7	48.0	72.8	12.1	54.4	30.8	32.3	44.0	29.3	0.0	8.3	2.5	15.2	37.5	61.1
All legumes and nuts	9.6	18.1	5.5	20.3	20.5	12.9	23.9	7.0	26.6	0.0	2.3	1.4	11.1	17.3	16.3
All dairy	1.7	2.5	1.4	2.6	1.8	6.3	2.2	1.6	1.6	9.1	1.8	2.4	7.8	1.5	2.3
Organ meat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Eggs	0.1	0.2	0.0	0.2	0.1	0.2	0.0	0.0	0.1	0.9	0.0	0.1	0.0	0.1	0.2
Small fish eaten whole w/bones	0.4	3.0	0.0	0.6	0.2	0.3	1.3	1.0	0.2	18.9	0.0	0.0	7.2	0.4	0.3
All other flesh foods misc. small animal protein	5.7	17.2	0.0	15.3	4.9	8.3	11.6	7.0	2.1	53.6	0.3	2.2	5.9	6.8	9.4
Vitamin A-rich dark green leafy vegetables ^b	1.1	4.0	1.1	0.7	3.9	16.9	6.3	15.3	16.0	0.0	15.2	40.4	28.2	14.5	3.2
Vitamin A-rich deep yellow/orange/red vegetables ^b	0.5	0.3	0.3	1.0	0.9	0.8	1.5	1.4	1.1	0.0	0.8	6.8	0.6	0.9	0.4
Vitamin C-rich vegetables ^c	1.8	2.3	1.8	1.5	5.1	6.5	6.8	7.2	9.7	0.0	42.1	17.1	11.4	4.5	2.7
Vitamin A-rich fruits ^b	2.9	1.1	4.2	0.5	3.1	6.5	4.4	7.9	3.7	0.0	22.1	23.2	3.0	5.5	1.2
Vitamin C-rich fruits ^c	0.4	0.2	0.6	0.1	0.6	0.5	0.4	1.6	1.0	0.0	3.4	0.2	0.7	0.3	0.3
All other fruits and vegetables	0.4	0.9	0.4	0.4	1.4	3.4	3.7	2.0	3.0	0.0	1.6	2.1	5.5	8.4	1.6

Table N9c. Percent Contribution of Food Groups (FGI-13) to Intake of Energy, Protein and Nutrients, NPNL Women, R2^a

^a Percents may not sum to 100 due to nutrient contributions from foods not included in any of the groups comprising the diversity indicators (e.g., fats, sweets, alcohol).

^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

^c Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g raw, taking into account retention factors.

Table N9d. Percent Contributio			100 (1 0	21) 10	intake (y , 1100		Hatrion	10, 11 1					
_Food groups (%)	Energy	Protein	СНО	Total fat	Thiamin	Riboflavi n	Niacin	Vitamin B6	Folate	Vitamin B12	Vitamin C	Vitamin A	Calcium	Iron	Zinc
Grains and grain products	52.6	46.3	67.8	11.6	49.4	28.4	29.7	37.7	24.0	0.0	1.0	1.5	9.6	34.3	58.
All other starchy staples	3.1	1.7	5.0	0.5	5.1	2.5	2.7	6.3	5.3	0.0	7.3	1.0	5.5	3.1	0 3.1
Cooked dry beans and peas	4.3	9.7	4.6	1.1	12.4	2.5 5.5	2.7 5.6	3.5	16.4	0.0	1.8	0.9	5.8	6.3	8.7
Soybeans and soy products	0.0	0.0	4.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Nuts and seeds	5.3	8.4	0.9	19.2	8.0	7.4	18.3	3.5	10.2	0.0	0.4	0.5	5.3	11.0	0.0 7.5
Milk/yogurt	1.6	2.5	1.4	2.5	1.8	6.2	2.2	1.6	1.5	9.1	1.8	2.1	7.7	1.5	2.3
Cheese	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.1	0.0	0.0
Beef, pork, veal, lamb, goat, game meat	3.2	7.8	0.0	9.0	3.3	6.3	7.8	3.6	1.1	35.6	0.1	0.4	1.2	4.3	7.0
Organ meat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chicken, duck, turkey, pigeon, guinea hen, game birds	0.5	0.9	0.0	0.9	0.5	0.8	0.9	0.5	0.0	1.2	0.0	0.9	0.2	0.6	0.7
Large whole fish/dried fish/shellfish, other seafood	2.0	8.5	0.0	5.5	1.2	1.2	2.9	2.9	1.0	16.8	0.2	0.9	4.5	2.0	1.7
Small fish eaten whole w/bones	0.4	3.0	0.0	0.6	0.2	0.3	1.3	1.0	0.2	18.9	0.0	0.0	7.2	0.4	0.3
Insects, grubs, snakes, rodents and other small animal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Eggs	0.1	0.2	0.0	0.2	0.1	0.2	0.0	0.0	0.1	0.9	0.0	0.1	0.0	0.1	0.2
Vitamin A-rich dark green leafy vegetables ^b	1.1	4.0	1.1	0.7	3.9	16.9	6.3	15.3	16.0	0.0	15.2	40.4	28.2	14.5	3.2
Vitamin A-rich deep yellow/orange/red vegetables ^b	0.5	0.3	0.3	1.0	0.9	0.8	1.5	1.4	1.1	0.0	0.8	6.8	0.6	0.9	0.4
Vitamin C-rich vegetables ^c	1.8	2.3	1.8	1.5	5.1	6.5	6.8	7.2	9.7	0.0	42.1	17.1	11.4	4.5	2.7
All other vegetables	0.4	0.9	0.3	0.3	1.3	3.3	3.6	1.9	2.9	0.0	1.5	2.1	5.5	8.4	1.6
Vitamin A-rich fruits ^b	2.9	1.1	4.2	0.5	3.1	6.5	4.4	7.9	3.7	0.0	22.1	23.2	3.0	5.5	1.2
Vitamin C-rich fruits ^c	0.4	0.2	0.6	0.1	0.6	0.5	0.4	1.6	1.0	0.0	3.4	0.2	0.7	0.3	0.3
All other fruits	0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.0

Table N9d. Percent Contribution of Food Groups (FGI-21) to Intake of Energy, Protein and Nutrients, NPNL Women, R2 ^a

^a Percents may not sum to 100 due to nutrient contributions from foods not included in any of the groups comprising the diversity indicators (e.g., fats, sweets, alcohol)

^b Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

^c Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g raw, taking into account retention factors.

	FC	GI-6	FG	I-6R	F	GI-9	FG	I-9R	FG	il-13	FGI	-13R	FC	GI-21	FG	I-21R
Nutrients	ling for	Control ling for	ling for	ling for	ling for	Control ling for	Not control ling for energy	Control ling for energy	ling for	Control ling for	ling for	Control ling for	ling for	Control ling for energy	Not control ling for energy	Control ling for energy
Total	chergy	chergy	chergy	chergy	chergy	chergy	chergy	chergy	chergy	chergy	chergy	chergy	chergy	chergy	chergy	chergy
energy	0.206*		0.189*		0.232**		0.223*		0.186*		0.252 **		0.191 *		0.280 **	
Thiamin	0.136	-0.018	0.234 **	0.144	0.145	-0.033	0.242**	0.120	0.120	-0.021	0.277 **	0.142	0.168	0.045	0.304 ***	0.153
Riboflavin	0.310***	0.241**	0.405 ***	0.368 ***	0.295***	0.206 *	0.421 ***	0.367 ***	0.142	0.048	0.374 ***	0.291 ***	0.156	0.062	0.371 ***	0.270 **
Niacin	0.267 **	0.188*	0.446 ***	0.418***	0.305***	0.217 *	0.443 ***	0.394 ***	0.305 ***	0.247 **	0.429 ***	0.360 ***	0.306 ***	0.245 **	0.459 ***	0.380 ***
Vitamin B6	0.295 ***	0.222*	0.344 ***	0.293 ***	0.284**	0.190*	0.386 ***	0.323 ***	0.277 **	0.212*	0.409 ***	0.334 ***	0.326 ***	0.270 **	0.447 ***	0.365 ***
Folate	0.197*	0.112	0.264 **	0.199*	0.164	0.057	0.282**	0.202*	0.195*	0.120	0.264 **	0.165	0.258 **	0.192 *	0.267 **	0.154
Vitamin B12	0.281 **	0.261 **	0.289 ***	0.271**	0.292***	0.270 **	0.244 **	0.221*	0.178*	0.157	0.231 **	0.206*	0.187 *	0.166	0.274 **	0.248 **
Vitamin C	0.259**	0.211*	0.399 ***	0.366 ***	0.342***	0.293 ***	0.524 ***	0.491 ***	0.324 ***	0.286 **	0.509 ***	0.469***	0.356 ***	0.318 ***	0.535 ***	0.492 ***
Vitamin A	0.346 ***	0.300 ***	0.407 ***	0.371 ***	0.399***	0.349 ***	0.529 ***	0.494 ***	0.354 ***	0.314 ***	0.485 ***	0.438 ***	0.392 ***	0.354 ***	0.512 ***	0.462 ***
Calcium	0.324 ***	0.269 **	0.242 **	0.185*	0.282**	0.212*	0.276 **	0.209*	0.284 **	0.232**	0.273 **	0.194*	0.292 ***	0.240 **	0.243 **	0.149
Iron	0.255**	0.173	0.103	-0.002	0.213*	0.103	0.152	0.035	0.246 **	0.175*	0.174*	0.043	0.267 **	0.197 *	0.154	-0.001
Zinc	0.173*	0.036	0.120	-0.024	0.142	-0.038	0.129	-0.047	0.174 *	0.058	0.164	-0.026	0.181*	0.064	0.149	-0.078

Table N10 Correlations between Food Group Diversity Scores and Estimated Usual Intakes of Individual Nutrients NPNI Women^{a, b}

^a Usual intake of energy and individual nutrients are estimated by the BLUP following the method described in section 11 of the WDDP protocol (Arimond et al. 2008). Diversity scores are from R2 data; BLUP calculation incorporates information from one to three rounds of data. ^b A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001.

Table N11a. Correlation between Energy from 6 Major Food Groups and MPA, With and Without Controlling for Total Energy Intake, NPNL Women^{a, b}

Major food groups	Correlation between MPA and energy from each food group:	Partial correlation coefficients for energy from each food group (controlling for total energy)
All starchy staples	0.077	-0.336 ***
All legumes and nuts	0.289 ***	0.218*
All dairy	0.026	-0.014
Other animal source foods	0.213*	0.179*
Vitamin A-rich fruits and vegetables ^c	0.487 ***	0.440 ***
Other fruits and vegetables	0.130	0.103

^a Numbers in bold indicate coefficients that changed direction when total energy was controlled for, with both coefficients being significant. A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001.

^b Energy from food groups is from second observation day; MPA is based on estimated usual intake, calculated using repeat observations for a subset of the sample.

^c Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect

Table N11b. Correlation between Energy from 9 Sub-Food Groups and MPA, With and Without Controlling for Total Energy Intake, NPNL Women ^{a. b}

Major food groups	Correlation between MPA and energy from each food group:	Partial correlation coefficients for energy from each food group (controlling for total energy)
All starchy staples	0.077	-0.336 ***
All legumes and nuts	0.289 ***	0.218*
All dairy	0.026	-0.014
Organ meat	_	-
Eggs	0.043	0.087
Flesh foods and other miscellaneous small animal protein	0.209*	0.172
Vitamin A-rich dark green leafy vegetables ^c	0.405 ***	0.400 ***
Other vitamin A-rich vegetables and fruits ^c	0.395 ***	0.342***
Other fruits and vegetables	0.130	0.103

^a Numbers in bold indicate coefficients that changed direction when total energy was controlled for, with both coefficients being significant. A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001.

^b Energy from food groups is from second observation day; MPA is based on estimated usual intake, calculated using repeat observations for a subset of the sample.

^c Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g *raw, taking into account retention factors*. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect.

Major food groups	Correlation between MPA and energy from each food group:	Partial correlation coefficients for energy from each food group (controlling for total energy)
All starchy staples	0.077	-0.336 ***
All legumes and nuts	0.289 ***	0.218*
All dairy	0.026	-0.014
Organ meat	_	_
Eggs	0.043	0.087
Small fish eaten whole with bones	0.153	0.122
All other flesh foods and miscellaneous small animal protein	0.198*	0.163
Vitamin A-rich dark green leafy vegetables ^c	0.405 ***	0.400 ***
Vitamin A-rich deep yellow/orange/red vegetables ^c	0.057	0.026
Vitamin C-rich vegetables ^d	0.052	0.035
Vitamin A-rich fruits ^c	0.393 ***	0.341 ***
Vitamin C-rich fruits ^d	0.109	0.139
All other fruits and vegetables	0.059	-0.015

Table N11c. Correlation between Energy from 13 Sub-Food Groups and MPA, With and Without Controlling for Total Energy Intake, NPNL Women a, b

^a Numbers in bold indicate coefficients that changed direction when total energy was controlled for, with both coefficients being significant. A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001.

^b Energy from food groups is from second observation day; MPA is based on estimated usual intake, calculated using repeat observations for a subset of the sample.

^c Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g raw, taking into account retention factors. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect. ^d Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g *raw, taking into account retention*

factors.

Table N11d. Correlation between energy from 21 Sub-Food Groups and MPA, With and Without Controlling for Total Energy Intake, NPNL Women a, b

	Correlation between	Partial correlation coefficients for
Major food groups	MPA and energy from each food group:	energy from each food group (controlling for total energy)
Grains and grain products	0.067	-0.241 **
All other starchy staples	0.013	-0.056
Cooked dry beans and peas	0.168	0.128
Soybeans and soy products	-	-
Nuts and seeds	0.243**	0.176*
Milk/yogurt	0.025	-0.015
Cheese	0.008	0.009
Beef, pork, veal, lamb, goat, game meat	0.250 **	0.263 **
Organ meat	_	-
Chicken, duck, turkey, pigeon, guinea hen, game birds	-0.008	-0.034
Large whole fish/dried fish/shellfish and other seafood	0.074	0.000
Small fish eaten whole with bones	0.153	0.122
Insects, grubs, snakes, rodents and other small animal	-	-
Eggs	0.043	0.087
Vitamin A-rich dark green leafy vegetables ^c	0.405 ***	0.400 ***
Vitamin A-rich deep yellow/orange/red vegetables ^c	0.057	0.026
Vitamin C-rich vegetables ^d	0.052	0.035
All other vegetables	-0.032	-0.075
Vitamin A-rich fruits ^c	0.393 ***	0.341 ***
Vitamin C-rich fruits ^d	0.109	0.139
All other fruits	0.104	0.046

^a Numbers in bold indicate coefficients that changed direction when total energy was controlled for, with both coefficients being significant. A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.00.01, and *** indicates p < 0.001. ^b Energy from food groups is from second observation day; MPA is based on estimated usual intake, calculated using

repeat observations for a subset of the sample.

^c Vitamin A-rich fruits and vegetables are defined as those with > 120 RE/100g raw, taking into account retention factors. As nutrient data is expressed as RE, RE values should be divided by 2 to reflect newer thinking about the bioefficacy of carotenoids. We note that this correction is imperfect. ^d Vitamin C-rich fruits and vegetables are defined as those with > 9 mg/100g *raw, taking into account retention*

factors.

Number						•		Diversity								<u> </u>
of food	I	FGI-6		FGI-6R		FGI-9		FGI-9R		FGI-13		FGI-13R		FGI-21		FGI-21R
groups eaten			-				Med	ian total ener	gy inta	ake (range)						
1	-	-			-	-	_		-	-	-	-	-	-	_	_
2	-	-	2867	(1389 - 4279)	—	-	2855	(1389 - 3103)	-	-	-	-	-	-	-	-
3	1423	(988-3103)	1741	(946-2900)	1423	(988 - 3103)	1912	(946-4279)	-	-	1912	(988-4279)	-	-	1892	(988-4279)
4	1918	(981-4279)	2085	(903-4192)	2074	(981-3083)	2078	(903-4192)	2074	(1389-3083)	1899	(903-4192)	1798	(988-3083)	1874	(903-3083)
5	2079	(946-5242)	2266	(1088-5242)	1959	(946-4836)	2317	(1088-5242)	1892	(981-4279)	2237	(1088-5242)	2074	(1173-4279)	2107	(981-5242)
6	2334	(903-3591)	2024	(1864-3504)	2085	(1068-5242)	1938	(1293-3779)	1959	(1131-4836)	2791	(1245-3591)	2044	(981-4836)	2505	(1218-3591)
7		, ,			2775	(903-3591)	_	- /	2197	(946-3341)	1955	(1789-3779)	1917	(946-4192)		(1245-3779)
8					_	-	_	_	2188	(1456-5242)	_	_	2024	(1068-5242)	_	· _ /
9					_	_	_	_	2107		_	-	2079	(903-3570)	_	_
10									_	_	_	-	2635	(1789-3779)	_	_
11									_	_	_	_	_	· –	_	_
12									_	_	_	-	_	-	_	_
13									_	_	_	_	_	-	_	_
14													_	-	_	_
15													_	-	_	_
16													_	-	_	_
17													_	-	_	_
18													_	-	_	_
19													_	_	_	_
20													_	-	_	-
21													_	—	_	_

Table N12. Total Energy Intake (kcal) by Food Group Diversity Scores, NPNL Women, R2^{a, b}

^a Energy intake and food group diversity scores for second observation day. ^b Light shading indicates impossible values (beyond range of possible scores). A — indicates that a cell has fewer than 5 observations. Cells with fewer than 10 observations have dark shading.

	Food group o	liversity score	Total ene	rgy intake	Correlation Coefficient		
	(mean)	(median)	(mean)	(median)			
FGI-6	4.8	5.0	2235	2078	0.206 *		
FGI-6R ^c	4.1	4.0	2235	2078	0.189*		
FGI-9	5.4	6.0	2235	2078	0.232 **		
FGI-9R ^c	4.3	4.0	2235	2078	0.223 *		
FGI-13	6.6	7.0	2235	2078	0.186*		
FGI-13R ^c	4.6	5.0	2235	2078	0.252 **		
FGI-21	7.2	7.0	2235	2078	0.191 *		
FGI-21R ^c	4.9	5.0	2235	2078	0.280 **		

Table N13. Relationship between Food Group Diversity Scores and Total Energy Intake, NPNL Women ^a

^a Food group diversity scores and mean and median energy intakes are from second observation day; BLUP for energy intake based on 1 to 3 observation days is used for correlation analysis.

^b A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001. ^c Refers to minimum intake of 15g for each of the food groups/sub food groups

Number								Diversity in	ndicat	tors						
of food		FGI-6		FGI-6R		FGI-9		FGI-9R		FGI-13		FGI-13R		FGI-21		FGI-21R
groups eaten			-					Median MP	A (rar	nge)	-				-	
1	-	-	_	_	-	-	_		-	-	-	-	-	-	-	_
2	_		0.21		_		0.21	(0.07 - 0.45)	-	-	-	-	-	-	-	_
3	0.45		0.32			(0.05 - 0.59)	0.32	(0.00-0.59)	-	-		(0.00-0.59)		-		(0.01-0.59)
4	0.32	(0.00-0.60)	0.40	(0.12-0.84)	0.32	(0.05-0.60)	0.37	(0.04-0.84)	0.32	(0.07-0.42)	0.33	(0.04-0.84)	0.32	(0.05-0.54)	0.32	(0.04-0.68)
5	0.42	(0.04-0.84)	0.45		0.33	(0.00-0.77)	0.43	(0.19-0.87)	0.33	(0.00-0.57)	0.41	(0.13-0.87)	0.36	(0.01-0.49)	0.41	(0.00-0.84)
6	0.52	(0.15-0.87)	0.62	(0.32 - 0.75)	0.46	(0.04-0.84)	0.53	(0.28-0.76)	0.32	(0.04-0.84)	0.52	(0.21-0.81)	0.25	(0.04-0.68)	0.52	(0.19-0.87)
7					0.57	(0.21-0.87)	-	_	0.39	(0.09-0.87)	0.53	(0.32 - 0.74)	0.34	(0.00-0.84)	0.59	(0.32-0.74)
8					_	_	-	_	0.47	(0.12-0.81)	_	_	0.44	(0.12-0.87)	-	_
9					_	_	_	_	0.52	(0.17-0.76)	-	_	0.39	(0.17-0.75)	-	_
10									-	- 1	-	_	0.55	(0.35-0.81)	_	_
11									-	_	-	_	_	- /	-	_
12									_	_	_	_	_	-	_	_
13									_	_	_	_	_	-	_	_
14													_	-	_	_
15													_	-	_	_
16													_	-	_	_
17													_	_	-	_
18													_	_	-	_
19													_	_	_	_
													_	_	_	_
													_	_	_	_
20 21		roitu oporoo ol					o hooo	d on optimate	duqu		ulated	using report	- - -	- - -	- - -	<u></u>

Table N14. MPA by Food Group Diversity Scores, NPNL Women ^{a, b}

^a Food group diversity scores are from second observation day; MPA is based on estimated usual intake, calculated using repeat observations for a subset of the sample

^b Light shading indicates impossible values (beyond range of possible scores). A — indicates that a cell has fewer than 5 observations. Cells with fewer than 10 observations have dark shading.

	-	up diversity core	N	IPA	Correlation Coefficient ^b	Partial correlation controlling for total energy intake ^b
	(mean)	(median)	(mean)	(median)		
FGI-6	4.8	5.0	0.39	0.38	0.304 ***	0.229 **
FGI-6R [°]	4.1	4.0	0.39	0.38	0.380 ***	0.347 ***
FGI-9	5.4	6.0	0.39	0.38	0.329 ***	0.241 **
FGI-9R [°]	4.3	4.0	0.39	0.38	0.424 ***	0.378 ***
FGI-13	6.6	7.0	0.39	0.38	0.272 **	0.201 *
FGI-13R ^c	4.6	5.0	0.39	0.38	0.434 ***	0.368 ***
FGI-21	7.2	7.0	0.39	0.38	0.330 ***	0.277 **
FGI-21R [°]	4.9	5.0	0.39	0.38	0.468 ***	0.394 ***

Table N15. Relationship between MPA and Food Group Diversity Scores, NPNL Women ^a

^a Food group diversity scores are from second observation day, MPA is based on one to three observations days ; BLUP for total energy intake were used for correlation analysis. ^b A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001. ^c Refers to minimum intake of 15g for each of the food groups/sub food groups

	FGI-	6	FGI-6	R	FGI-	9	FGI-9	R	FGI-	13	FGI-1	3R	FGI-2	1	FGI-21	R
		Not controlling for energy														
	в	Stan dard error	В	Stan dard error		Stan dard error	в	Stan dard error	в	Stan dard error		Stan dard error	в	Stan dard error	В	Stan dard error
Constant	0.301	0.466	0.342	0.452	0.480	0.457	0.417	0.440	0.541	0.464	0.447	0.439	0.539	0.454	0.437	0.430
Woman's height	-0.001	0.003	-0.001	0.003	-0.002	0.003	-0.002	0.003	-0.001	0.003	-0.002	0.003	-0.002	0.003	-0.002	0.003
Age	-0.004	0.002	-0.003	0.002	-0.004	0.002	-0.002	0.002	-0.004	0.002	-0.002	0.002	-0.004 *	0.002	-0.002	0.002
Dietary diversity score	0.087 ***	0.025	0.073***	0.017	0.064 ***	0.017	0.073***	0.015	0.034**	0.011	0.065 ***	0.013	0.037 ***	0.009	0.062***	0.011
Adjusted R ²	0.097 **		0.137 ***		0.111 ***		0.175 ***		0.078**		0.180 ***		0.119***		0.213***	
		-					Co	ntrolling	for energy							
		Stand ard		Stan dard		Stan dard										
	В	error	В	error	В	error	В	error	В	error	В	error	В	error	В	error
Constant	-1.990 ***	0.422	-1.960 ***	0.408	-1.874 ***	0.422	-1.859 ***	0.401	-1.890 ***	0.425	-1.811 ***	0.406	-1.842 ***	0.416	-1.774 ***	0.399
Woman's height	-0.003	0.002	-0.002	0.002	-0.003	0.002	-0.003	0.002	-0.003	0.002	-0.003	0.002	-0.003	0.002	-0.003	0.002
Age	-0.002	0.002	-0.001	0.002	-0.002	0.002	-0.001	0.001	-0.002	0.002	-0.001	0.002	-0.002	0.002	-0.001	0.001
Dietary diversity score Total	0.047*	0.019	0.049***	0.013	0.035**	0.013	0.050 ***	0.011	0.018*	0.008	0.041***	0.010	0.023**	0.007	0.040 ***	0.009
energy intake ^c	126.141 ***	12.924	124.070 ***	12.440	125.056 ***	12.925	121.391 ***	12.275	127.634 ***	12.926	120.234 ***	12.480	124.904 ***	12.660	117.812***	12.318
Adjusted R ²	0.491 ***		0.523 ***		0.495***		0.540 ***		0.485***		0.532 ***		0.508 ***		0.548 ***	

Table N16. Results of Ordinary Least Squares Regression Analysis of the Determinants of MPA, NPNL Women ^{a, b}

^a A "*" indicates a coefficient that is statistically significant at p < 0.05; ** indicates p < 0.01, and *** indicates p < 0.001. For the adjusted R², the stars indicate the significance level of the F statistic of the regression.

^b BLUP for total energy intake was used in the regressions. MPA and BLUP calculation for total energy intake incorporates information from one to three rounds. ^c BLUP for total energy intake was divided by 1000 before running the regressions due to the large scale of the energy variable and the small scale of MPA.

Based on the results shown in Table N17, three MPA cut-offs are considered - 50%, 60% and 70% - for Tables N18-N19.

Table N17. Percent of Observation	Days Above Selected Cut-O	ff(s) for MPA, NPNL Women

	Percent (number)
Women with MPA >50%	27.7 (36)
Women with MPA >60%	15.2 (20)
Women with MPA >70%	9.4 (12)
Women with MPA >80%	2.2 (3)
Women with MPA >90%	0.0 (0)

Table N18. MPA: Performance of Diversity Scores, NPNL Women ^a

	Range	AUC	p-value ^b	SEM ^c	95% CI ^d
		MP	A >50% (first cut-	off)	
FGI-6	3.0-6.0	0.663	<0.001	0.045	0.574-0.751
FGI-6R ^e	2.0-6.0	0.684	<0.001	0.049	0.587-0.781
FGI-9	3.0-7.0	0.698	<0.001	0.050	0.599-0.796
FGI-9R ^e	2.0-7.0	0.721	<0.001	0.050	0.623-0.819
FGI-13	3.0-10.0	0.658	0.003	0.054	0.553-0.763
FGI-13R ^e	2.0-8.0	0.741	<0.001	0.050	0.643-0.839
FGI-21	3.0-10.0	0.687	0.001	0.053	0.582-0.791
FGI-21R ^e	2.0-9.0	0.762	<0.001	0.050	0.664-0.860
		MPA	> 60% (second cu	ut-off)	
FGI-6	3.0-6.0	0.664	0.001	0.050	0.566-0.761
FGI-6R ^e	2.0-6.0	0.688	0.001	0.055	0.580-0.795
FGI-9	3.0-7.0	0.692	0.001	0.057	0.581-0.804
FGI-9R ^e	2.0-7.0	0.684	0.001	0.056	0.575-0.793
FGI-13	3.0-10.0	0.628	0.025	0.057	0.516-0.740
FGI-13R ^e	2.0-8.0	0.740	<0.001	0.052	0.637-0.843
FGI-21	3.0-10.0	0.666	0.006	0.060	0.548-0.784
FGI-21R ^e	2.0-9.0	0.790	<0.001	0.047	0.697-0.883
	-	MPA	A > 70% (third cut	-off)	
FGI-6	3.0-6.0	0.641	0.003	0.048	0.548-0.735
FGI-6R ^e	2.0-6.0	0.631	0.041	0.064	0.505-0.756
FGI-9	3.0-7.0	0.704	0.001	0.063	0.581-0.828
FGI-9R ^e	2.0-7.0	0.632	0.384	0.064	0.507-0.756
FGI-13	3.0-10.0	0.692	0.004	0.067	0.561-0.823
FGI-13R ^e	2.0-8.0	0.731	<0.001	0.054	0.625-0.837
FGI-21	3.0-10.0	0.743	0.000	0.068	0.610-0.876
FGI-21R ^e	2.0-9.0	0.798	<0.001	0.045	0.710-0.887

^a Diversity scores are from second observation day. MPA is calculated based on one to three observation days. ^b P-value for test of null hypothesis that area=0.5 (—eutral" diagonal line on ROC graph). ^c Standard error of the mean.

^d Confidence interval.

^e Refer to minimum intake of 15g for each food groups/sub food groups.

			-	MPA > 50	% (first cut-	off)			
		FGI-6	FGI-6R	FGI-9	FGI-9R	FGI-13	FGI-13R	FGI-21	FGI-21R
	AUC ^c	0.663	0.684	0.698	0.721	0.658	0.741	0.687	0.762
					P	-values			
FGI-6	0.663								
FGI-6R ^d	0.684	0.581							
FGI-9	0.698	0.219	0.774						
FGI-9R ^d	0.721	0.153	0.069	0.611					
FGI-13	0.658	0.923	0.601	0.322	0.172				
FGI-13R ^d	0.741	0.066	0.052	0.337	0.393	0.034			
FGI-21	0.687	0.647	0.958	0.823	0.495	0.249	0.223		
FGI-21R ^d	0.762	0.039	0.030	0.222	0.208	0.029	0.363	0.085	
					(second cu				
		FGI-6	FGI-6R	FGI-9	FGI-9R	FGI-13	FGI-13R	FGI-21	FGI-21R
	AUC ^c	0.664	0.688	0.692	0.684	0.628	0.740	0.666	0.790
					P	-values			
FGI-6	0.664								
FGI-6R ^d	0.688	0.565							
FGI-9	0.692	0.456	0.932						
FGI-9R ^d	0.684	0.656	0.871	0.878					
FGI-13	0.628	0.597	0.324	0.267	0.357				
FGI-13R ^d	0.740	0.138	0.179	0.346	0.121	0.009			
FGI-21	0.666	0.972	0.752	0.730	0.791	0.276	0.166		
FGI-21R ^d	0.790	0.033	0.036	0.129	0.024	0.002	0.135	0.007	
					% (third cut				
		FGI-6	FGI-6R	FGI-9	FGI-9R	FGI-13	FGI-13R	FGI-21	FGI-21R
	AUC ^c	0.641	0.631	0.704	0.632	0.692	0.731	0.743	0.798
501.0	0.044				Р	-values			
FGI-6	0.641	0.040							
FGI-6R ^d	0.631	0.840	0.070						
FGI-9	0.704	0.210	0.276	0.000					
FGI-9R ^d	0.632	0.869	0.973	0.290	0.204				
FGI-13	0.692	0.503	0.342	0.871	0.394	0.240			
FGI-13R ^d	0.731	0.158	0.059	0.678	0.058	0.342	0.000		
FGI-21	0.743	0.230	0.113	0.671	0.147	0.233	0.823	0.000	
FGI-21R ^d	0.798	0.011	0.006	0.220	0.007	0.084	0.095	0.238	

Table N19. MPA: Tests Comparing AUC for Various Diversity Scores, NPNL Women ^{a, b}

^a Diversity scores are from second observation day. MPA is calculated based on one to three observation days. ^b P-value for test of null hypothesis that area under the curve is equal for the 2 indicators. P-values <0.05 are in bold type... ^c Area under the curve. ^d Refer to minimum intake of 15g for each food groups/sub food groups.

<u> </u>	unu mi 74			Proportion of	Proportion of	Total proportion					
N	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified					
	MPA > 50%										
130	≥ 1	100.0	0.0	72.3	0.0	72.3					
130	≥2	100.0	0.0	72.3	0.0	72.3					
130	≥ 3	100.0	0.0	72.3	0.0	72.3					
125	≥ 4	94.4	3.2	70.0	1.5	71.5					
98	≥ 5	91.7	30.9	50.0	2.3	52.3					
15	6	25.0	93.6	4.6	20.8	25.4					
				MPA > 60%							
130	≥ 1	100.0	0.0	84.6	0.0	84.6					
130	≥2	100.0	0.0	84.6	0.0	84.6					
130	≥ 3	100.0	0.0	84.6	0.0	84.6					
125	≥ 4	100.0	4.5	80.8	0.0	80.8					
98	≥ 5	95.0	28.2	60.8	0.8	61.5					
15	6	25.0	90.9	7.7	11.5	19.2					
				MPA > 70%							
130	≥ 1	100.0	0.0	90.8	0.0	90.8					
130	≥2	100.0	0.0	90.8	0.0	90.8					
130	≥ 3	100.0	0.0	90.8	0.0	90.8					
125	≥ 4	100.0	4.2	86.9	0.0	86.9					
98	≥ 5	100.0	27.1	66.2	0.0	66.2					
15	6	16.7	89.0	10.0	7.7	17.7					

Table N20a. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity (FGI-6) and MPA, By Diversity Cut-Offs, NPNL Women ^a

^a Diversity scores are from a single (R2) observation day. MPA is calculated based on one to three observation days.

Table N20b. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity
(FGI-6R) and MPA, by Diversity Cut-Offs, NPNL Women ^a

n	Cutoff	Sensitivity	Specificity	Proportion of false positives	Proportion of false negatives	Total proportion misclassified
	outon	Contenting	opeenieity	MPA > 50%	laise negatives	moondoomou
130	≥ 1	100.0	0.0	72.3	0.0	72.3
130	≥2	100.0	0.0	72.3	0.0	72.3
124	≥ 3	100.0	6.4	67.7	0.0	67.7
96	≥4	88.9	31.9	49.2	3.1	52.3
52	≥ 5	58.3	67.0	23.8	11.5	35.4
7	6	16.7	98.9	0.8	23.1	23.8
				MPA > 60%		
130	≥ 1	100.0	0.0	84.6	0.0	84.6
130	≥2	100.0	0.0	84.6	0.0	84.6
124	≥3	100.0	5.5	80.0	0.0	80.0
96	≥ 4	100.0	30.9	58.5	0.0	58.5
52	≥ 5	55.0	62.7	31.5	6.9	38.5
7	6	20.0	97.3	2.3	12.3	14.6
				MPA > 70%		
130	≥ 1	100.0	0.0	90.8	0.0	90.8
130	≥2	100.0	0.0	90.8	0.0	90.8
124	≥ 3	100.0	5.1	86.2	0.0	86.2
96	≥ 4	100.0	28.8	64.6	0.0	64.6
52	≥ 5	50.0	61.0	35.4	4.6	40.0
7	6	8.3	94.9	4.6	8.5	13.1

				Proportion of	Proportion of	Total proportion
n	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified
				MPA > 50%		
130	≥ 1	100.0	0.0	72.3	0.0	72.3
130	≥ 2	100.0	0.0	72.3	0.0	72.3
130	≥ 3	100.0	0.0	72.3	0.0	72.3
125	≥ 4	94.4	3.2	70.0	1.5	71.5
106	≥ 5	91.7	22.3	56.2	2.3	58.5
70	≥ 6	77.8	55.3	32.3	6.2	38.5
14	≥7	25.0	94.7	3.8	20.8	24.6
0	≥ 8	_	_	_	_	_
0	9	_	_	_	_	_
				MPA > 60%		
130	≥ 1	100.0	0.0	84.6	0.0	84.6
130	≥ 2	100.0	0.0	84.6	0.0	84.6
130	≥ 3	100.0	0.0	84.6	0.0	84.6
125	≥ 4	100.0	4.5	80.8	0.0	80.8
106	≥ 5	95.0	20.9	66.9	0.8	67.7
70	≥ 6	80.0	50.9	41.5	3.1	44.6
14	≥7	25.0	91.8	6.9	11.5	18.5
0	≥ 8	-	_	_	-	-
0	9	-	_	_	-	-
				MPA > 70%		
130	≥ 1	100.0	0.0	90.8	0.0	90.8
130	≥ 2	100.0	0.0	90.8	0.0	90.8
130	≥ 3	100.0	0.0	90.8	0.0	90.8
125	≥ 4	100.0	4.2	86.9	0.0	86.9
106	≥ 5	100.0	20.3	72.3	0.0	72.3
70	≥ 6	83.3	49.2	46.2	1.5	47.7
14	≥ 7	25.0	90.7	8.5	6.9	15.4
0	≥ 8	-	_	_	-	_
0	9	-	_	_	-	_

Table N20c. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity
(FGI-9) and MPA, by Diversity Cut-Offs, NPNL Women ^a

				Proportion of	Proportion of	Total proportion
n	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified
				MPA > 50%		
130	≥ 1	100.0	0.0	72.3	0.0	72.3
130	≥ 2	100.0	0.0	72.3	0.0	72.3
125	≥ 3	100.0	5.3	68.5	0.0	68.5
98	≥ 4	88.9	29.8	50.8	3.1	53.8
56	≥ 5	66.7	66.0	24.6	9.2	33.8
19	≥ 6	36.1	93.6	4.6	17.7	22.3
2	≥ 7	5.6	100.0	0.0	26.2	26.2
0	≥ 8	-	_	-	-	_
0	9	-	_	-	-	_
				MPA > 60%		
130	≥ 1	100.0	0.0	84.6	0.0	84.6
130	≥ 2	100.0	0.0	84.6	0.0	84.6
125	≥ 3	100.0	4.5	80.8	0.0	80.8
98	≥ 4	100.0	29.1	60.0	0.0	60.0
56	≥ 5	60.0	60.0	33.8	6.2	40.0
19	≥ 6	30.0	88.2	10.0	10.8	20.8
2	≥7	5.0	99.1	0.8	14.6	15.4
0	≥ 8	-	-	-	-	-
0	9	-	_	-	-	_
				MPA > 70%		
130	≥ 1	100.0	0.0	90.8	0.0	90.8
130	≥ 2	100.0	0.0	90.8	0.0	90.8
125	≥ 3	100.0	4.2	86.9	0.0	86.9
98	≥ 4	100.0	27.1	66.2	0.0	66.2
56	≥ 5	58.3	58.5	37.7	3.8	41.5
19	≥ 6	16.7	85.6	13.1	7.7	20.8
2	≥ 7	0.0	98.3	1.5	9.2	10.8
0	≥ 8	-	_	_	-	_
0	9	_	_	_	_	_

Table N20d. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity (FGI-9R) and MPA, by Diversity Cut-Offs, NPNL Women ^a

<u>, </u>	,	A, by Diversity	, 200 0110, 10	Proportion of	Proportion of	Total proportion
n	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified
				MPA > 50%	.	
130	≥1	100.0	0.0	72.3	0.0	72.3
130	≥ 2	100.0	0.0	72.3	0.0	72.3
130	≥ 3	100.0	0.0	72.3	0.0	72.3
126	≥ 4	94.4	2.1	70.8	1.5	72.3
116	≥ 5	94.4	12.8	63.1	1.5	64.6
100	≥ 6	91.7	28.7	51.5	2.3	53.8
74	≥7	69.4	47.9	37.7	8.5	46.2
38	≥ 8	47.2	77.7	16.2	14.6	30.8
13	≥ 9	19.4	93.6	4.6	22.3	26.9
1	≥ 10	2.8	100.0	0.0	26.9	26.9
0	≥ 11	-	_	-	-	-
0	≥ 12	-	_	-	-	-
0	13	—	—		-	-
400		400.0	0.0	MPA > 60%	0.0	04.0
130	≥1	100.0	0.0	84.6	0.0	84.6
130 130	≥2	100.0 100.0	0.0	84.6	0.0	84.6
126	≥ 3 ≥ 4	100.0	0.0 3.6	84.6 81.5	0.0 0.0	84.6 81.5
120	≥ 4 ≥ 5	100.0	12.7	73.8	0.0	73.8
100	≥ 5 ≥ 6	100.0	27.3	61.5	0.0	61.5
74	≥ 7	70.0	45.5	46.2	4.6	50.8
38	≥ 8	40.0	72.7	23.1	9.2	32.3
13	_ 0 ≥ 9	10.0	90.0	8.5	13.8	22.3
1	≥ 10	5.0	100.0	0.0	14.6	14.6
0	≥ 11	_	_	_	_	_
Ō	≥ 12	_	_	_	_	_
0	13	_	_	_	_	_
				MPA > 70%		
130	≥1	100.0	0.0	90.8	0.0	90.8
130	≥2	100.0	0.0	90.8	0.0	90.8
130	≥ 3	100.0	0.0	90.8	0.0	90.8
126	≥ 4	100.0	3.4	87.7	0.0	87.7
116	≥ 5	100.0	11.9	80.0	0.0	80.0
100	≥ 6	100.0	25.4	67.7	0.0	67.7
74	≥7	83.3	45.8	49.2	1.5	50.8
38	≥ 8	50.0	72.9	24.6	4.6	29.2
13	≥9	16.7	90.7	8.5	7.7	16.2
1	≥ 10	8.3	100.0	0.0	8.5	8.5
0	≥ 11	_	_	_	-	-
0	≥ 12	-	—	-	-	-
0	13	-	-	-	_	_

Table N20e. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity (FGI-13) and MPA, by Diversity Cut-Offs, NPNL Women ^a

· •			- /	Proportion of	Proportion of	Total proportion
n	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified
		•		MPA > 50%	Ŭ	
130	≥ 1	100.0	0.0	72.3	0.0	72.3
130	≥ 2	100.0	0.0	72.3	0.0	72.3
126	≥ 3	100.0	4.3	69.2	0.0	69.2
101	≥ 4	88.9	26.6	53.1	3.1	56.2
67	≥ 5	77.8	58.5	30.0	6.2	36.2
29	≥ 6	50.0	88.3	8.5	13.8	22.3
9	≥7	16.7	96.8	2.3	23.1	25.4
1	≥ 8	2.8	100.0	0.0	26.9	26.9
0	≥ 9	-	-	-	-	-
0	≥ 10	-	_	-	-	-
0	≥ 11	-	_	-	-	-
0	≥ 12	-	-	-	-	-
0	13	-	_	-	-	-
				MPA > 60%		
130	≥ 1	100.0	0.0	84.6	0.0	84.6
130	≥ 2	100.0	0.0	84.6	0.0	84.6
126	≥ 3	100.0	3.6	81.5	0.0	81.5
101	≥ 4	100.0	26.4	62.3	0.0	62.3
67	≥ 5	80.0	53.6	39.2	3.1	42.3
29	≥ 6	50.0	82.7	14.6	7.7	22.3
9	≥7	15.0	94.5	4.6	13.1	17.7
1	≥ 8	0.0	99.1	0.8	15.4	16.2
0	≥ 9	-	-	-	-	-
0	≥ 10	-	-	-	-	-
0	≥ 11	-	-	-	-	-
0	≥ 12	-	-	-	-	-
0	13	_	_		-	_
100				MPA > 70%		
130	≥1	100.0	0.0	90.8	0.0	90.8
130	≥2	100.0	0.0	90.8	0.0	90.8
126	≥ 3	100.0	3.4	87.7	0.0	87.7
101	≥4	100.0	24.6	68.5	0.0	68.5
67	≥ 5	91.7	52.5	43.1	0.8	43.8
29	≥6	41.7	79.7	18.5	5.4	23.8
9	≥7	8.3	93.2	6.2	8.5	14.6
1	≥ 8	0.0	99.2	0.8	9.2	10.0
0	≥9	_	_	-	-	-
0	≥ 10	_	_	-	-	-
0	≥ 11	_	_	-	-	-
0	≥ 12	_	_	_	-	-
0	13	-	-	—	—	—

Table N20f. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity (FGI-13R) and MPA, by Diversity Cut-Offs, NPNL Women ^a

(FGI-21) and MPA, by Diversity Cut-Offs, NPNL Women "							
	Cutoff	Sensitivity	Specificity	Proportion of	Proportion of	Total proportion misclassified	
<u>n</u>	Cuton	Sensitivity	Specificity	false positives MPA > 50%	false negatives	misclassified	
400	> 4	400.0	0.0		0.0	70.0	
130	≥1	100.0	0.0	72.3	0.0	72.3	
130	≥2	100.0	0.0	72.3	0.0	72.3	
130	≥ 3	100.0	0.0	72.3	0.0	72.3	
128	≥4	97.2	1.1	71.5	0.8	72.3	
118	≥5	94.4	10.6	64.6	1.5	66.2	
108	≥ 6	94.4	21.3	56.9	1.5	58.5	
89	≥7	83.3	37.2	45.4	4.6	50.0	
64	≥ 8	66.7	57.4	30.8	9.2	40.0	
31	≥9	41.7	83.0	12.3	16.2	28.5	
11	≥ 10	25.0	97.9	1.5	20.8	22.3	
0	≥ 11	-	-	-	-	-	
0	≥ 12	-	-	-	-	-	
0	≥ 13	-	-	-	-	-	
0	≥ 14	-	-	-	-	-	
0	≥ 15	-	-	-	-	-	
0	≥ 16	_	-	-	-	-	
0	≥ 17	-	-	-	-	-	
0	≥ 18	-	-	-	-	-	
0	≥ 19	-	-	-	-	-	
0	≥ 20	-	-	-	-	-	
0	21	-	_	-	-	-	
				MPA > 60%			
130	≥ 1	100.0	0.0	84.6	0.0	84.6	
130	≥ 2	100.0	0.0	84.6	0.0	84.6	
130	≥ 3	100.0	0.0	84.6	0.0	84.6	
128	≥ 4	100.0	1.8	83.1	0.0	83.1	
118	≥ 5	100.0	10.9	75.4	0.0	75.4	
108	≥ 6	100.0	20.0	67.7	0.0	67.7	
89	≥7	90.0	35.5	54.6	1.5	56.2	
64	≥ 8	65.0	53.6	39.2	5.4	44.6	
31	≥ 9	35.0	78.2	18.5	10.0	28.5	
11	≥ 10	25.0	94.5	4.6	11.5	16.2	
0	≥ 11	_	_	_	_	_	
Ō	≥ 12	_	_	_	_	_	
0	≥ 13	_	_	_	_	_	
Õ	≥ 14	_	_	_	_	_	
0	≥ 15	_	_	_	_	_	
0	≥ 16	_	_	_	_	_	
0	≥ 17	_	_	_	_	_	
0	≥ 18	_	_	_	_	_	
0	≥ 18 ≥ 19	-		_	-	_	
0	≥ 19 ≥ 20	_		_	-	_	
0	≥ 20 21	_	_	_	-	_	
0	21	-					

Table N20g. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity (FGI-21) and MPA, by Diversity Cut-Offs, NPNL Women ^a

^a Diversity scores are from a single (R2) observation day. MPA is calculated based on one to three observation days.

(continued)

				Proportion of	Proportion of	Total proportion
n	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified
				MPA > 70%		
130	≥ 1	100.0	0.0	90.8	0.0	90.8
130	≥ 2	100.0	0.0	90.8	0.0	90.8
130	≥ 3	100.0	0.0	90.8	0.0	90.8
128	≥ 4	100.0	1.7	89.2	0.0	89.2
118	≥ 5	100.0	10.2	81.5	0.0	81.5
108	≥ 6	100.0	18.6	73.8	0.0	73.8
89	≥7	100.0	34.7	59.2	0.0	59.2
64	≥ 8	75.0	53.4	42.3	2.3	44.6
31	≥ 9	50.0	78.8	19.2	4.6	23.8
11	≥ 10	33.3	94.1	5.4	6.2	11.5
0	≥ 11	-	-	-	-	-
0	≥ 12	_	_	-	-	-
0	≥ 13	-	_	-	-	-
0	≥ 14	_	_	-	-	-
0	≥ 15	-	_	-	-	-
0	≥ 16	_	_	-	_	_
0	≥ 17	_	_	-	-	-
0	≥ 18	_	_	_	-	-
0	≥ 19	-	_	-	-	-
0	≥ 20	-	_	-	-	-
0	21	_	_	_	_	_

Table N20g (continued). Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity (FGI-21) and MPA, by Diversity Cut-Offs, NPNL Women ^a

^a Diversity scores are from a single (R2) observation day. MPA is calculated based on one to three observation days.

Table N20h. Sensitivity/Specificity Analysis of the Relationship between Food Group Diversity
(FGI-21R) and MPA, by Diversity Cut-Offs, NPNL Women ^a

				Proportion of	Proportion of	Total proportion
n	Cutoff	Sensitivity	Specificity	false positives	false negatives	misclassified
				MPA > 50%		
130	≥ 1	100.0	0.0	72.3	0.0	72.3
130	≥ 2	100.0	0.0	72.3	0.0	72.3
126	≥ 3	100.0	4.3	69.2	0.0	69.2
107	≥ 4	88.9	20.2	57.7	3.1	60.8
73	≥ 5	83.3	54.3	33.1	4.6	37.7
48	≥ 6	75.0	77.7	16.2	6.9	23.1
15	≥ 7	25.0	93.6	4.6	20.8	25.4
5	≥ 8	11.1	98.9	0.8	24.6	25.4
1	≥ 9	2.8	100.0	0.0	26.9	26.9
0	≥ 10	-	_	-	-	-
0	≥ 11	_	_	-	-	-
0	≥ 12	-	_	-	-	-
0	≥ 13	_	_	-	-	-
0	≥ 14	-	_	-	-	-
0	≥ 15	-	_	-	-	-
0	≥ 16	_	_	-	-	-
0	≥ 17	-	_	-	-	-
0	≥ 18	-	_	-	-	-
0	≥ 19	-	_	-	-	-
0	≥ 20	-	_	-	-	-
0	21	-	_	-	-	-

^a Diversity scores are from a single (R2) observation day. MPA is calculated based on one to three observation days.

(continued)

Table N20h (continued). Sensitivity/Specificity Analysis of the Relationship between Food Group
Diversity (FGI-21R) and MPA, by Diversity Cut-Offs, NPNL Women ^a

Diversity (FGI-21R) and MPA, by Diversity Cut-Offs, NPNL Women ^a							
				Proportion of	Proportion of	Total proportion	
n	Cutoff	Sensitivity	Specificity		false negatives	misclassified	
				MPA > 60%			
130	≥1	100.0	0.0	84.6	0.0	84.6	
130	≥2	100.0	0.0	84.6	0.0	84.6	
126	≥ 3	100.0	3.6	81.5	0.0	81.5	
107	≥ 4	100.0	20.9	66.9	0.0	66.9	
73	≥ 5	90.0	50.0	42.3	1.5	43.8	
48	≥ 6	80.0	70.9	24.6	3.1	27.7	
15	≥ 7	30.0	91.8	6.9	10.8	17.7	
5	≥ 8	10.0	97.3	2.3	13.8	16.2	
1	≥ 9	0.0	99.1	0.8	15.4	16.2	
0	≥ 10	_	_	_	-	-	
0	≥ 11	-	_	_	-	-	
0	≥ 12	_	_	_	-	-	
0	≥ 13	_	_	_	_	_	
0	≥ 14	_	_	_	-	-	
0	≥ 15	_	_	_	_	_	
0	≥ 16	_	_	_	_	_	
0	≥ 17	_	_	_	_	_	
0	≥ 18	_	_	_	_	_	
0	≥ 19	_	_	_	_	_	
0	≥ 20	_	_	_	_	_	
0	21	_	_	_	_	_	
				MPA > 70%			
130	≥ 1	100.0	0.0	90.8	0.0	90.8	
130	≥ 2	100.0	0.0	90.8	0.0	90.8	
126	≥ 3	100.0	3.4	87.7	0.0	87.7	
107	≥ 4	100.0	19.5	73.1	0.0	73.1	
73	≥ 5	100.0	48.3	46.9	0.0	46.9	
48	≥ 6	83.3	67.8	29.2	1.5	30.8	
15	≥7	25.0	89.8	9.2	6.9	16.2	
5	≥ 8	16.7	97.5	2.3	7.7	10.0	
1	≥ 9	0.0	99.2	0.8	9.2	10.0	
0	≥ 10	_	_	_	_	_	
0	≥ 11	_	_	_	_	-	
0	≥ 12	_	_	_	_	_	
0	≥ 13	_	_	_	_	-	
0	≥ 14	_	_	_	_	_	
0	≥ 15	_	_	_	_	_	
0	≥ 16	_	_	_	_	_	
0	≥ 17	_	_	_	_	_	
0	≥ 18	_	_	_	_	_	
0	≥ 19	_	_	_	_	_	
0	≥ 20	_	_	_	_	_	
0	21	_	_	_	_	_	

FIGURES

Histograms of intakes for 11 micronutrients (R2 data): Figures N1-N11

Histograms for intra-individual SDs of intake, based on data from one to three rounds: Figures N12-N22

Histograms for FGIs (R2 data): Figures N23-N30

Histograms of PA for 11 micronutrients, based on data from one to three rounds: Figures N31-N41

Histogram of MPA, based on data from one to three rounds: Figure N42

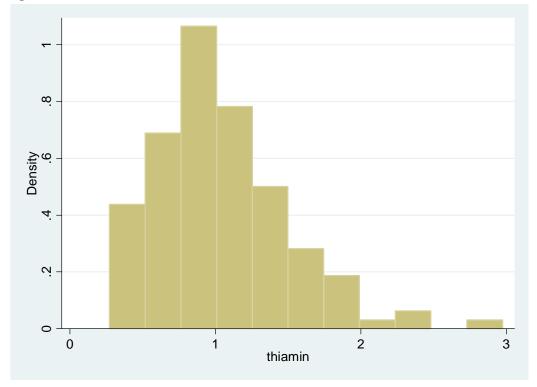
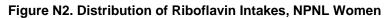
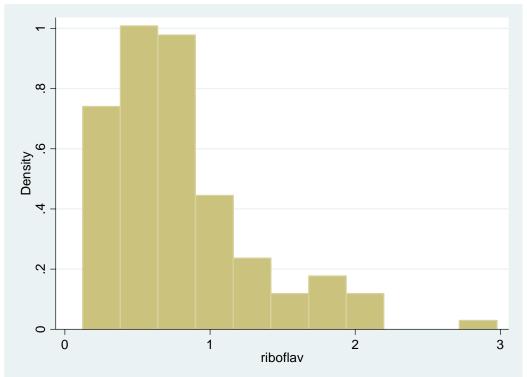




Figure N1. Distribution of Thiamin Intakes, NPNL Women

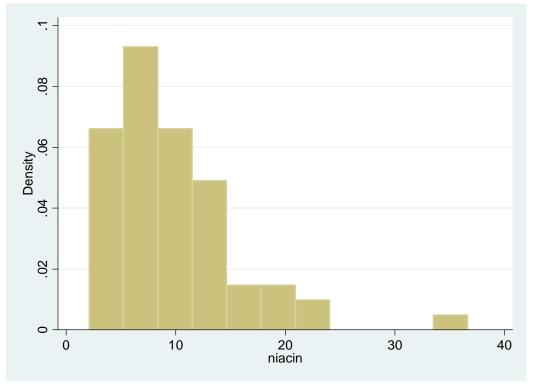
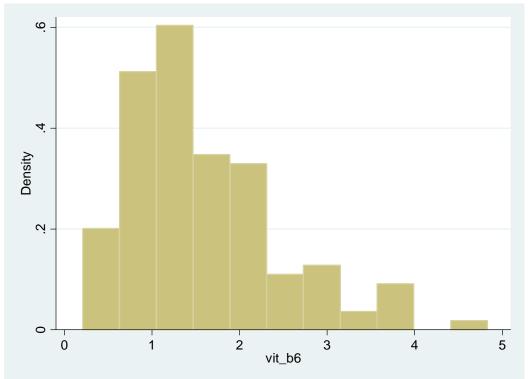



Figure N3. Distribution of Niacin Intakes, NPNL Women

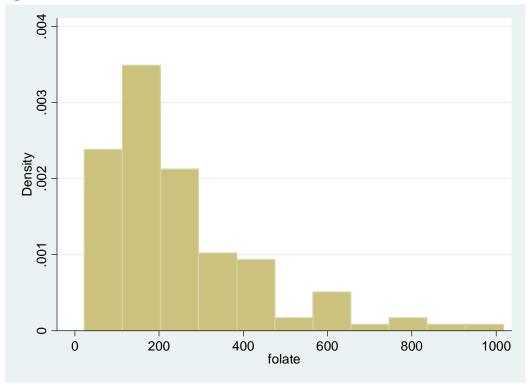
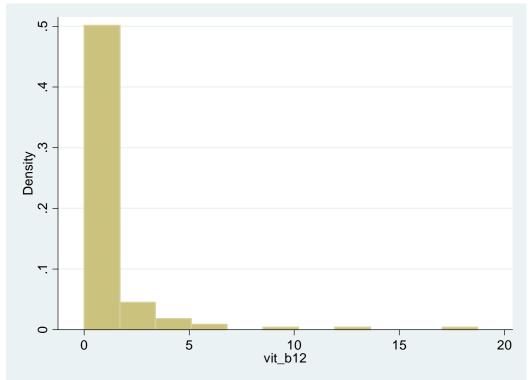



Figure N5. Distribution of Folate Intakes, NPNL Women

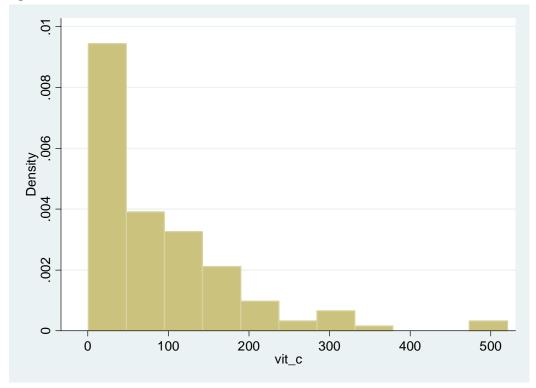
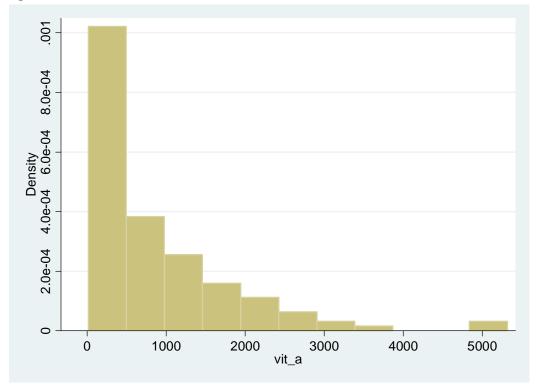



Figure N7. Distribution of Vitamin C Intakes, NPNL Women

Figure N8. Distribution of Vitamin A Intakes, NPNL Women

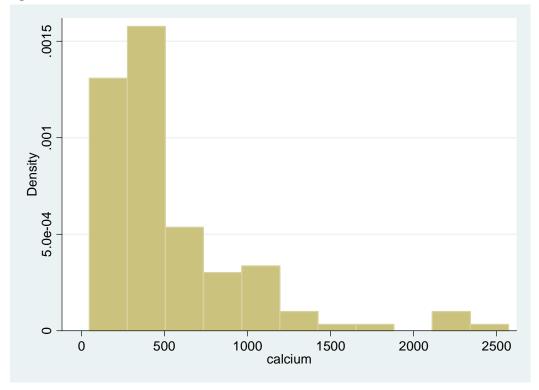
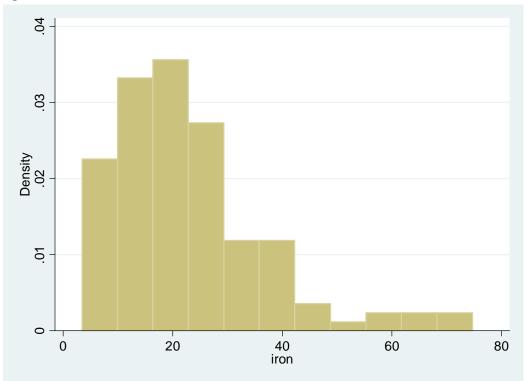



Figure N9. Distribution of Calcium Intakes, NPNL Women

Figure N10. Distribution of Iron Intakes, NPNL Women

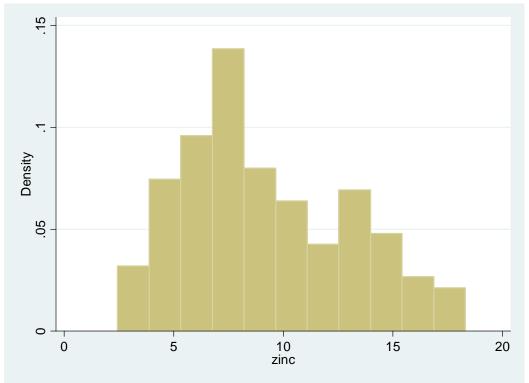
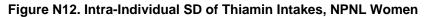
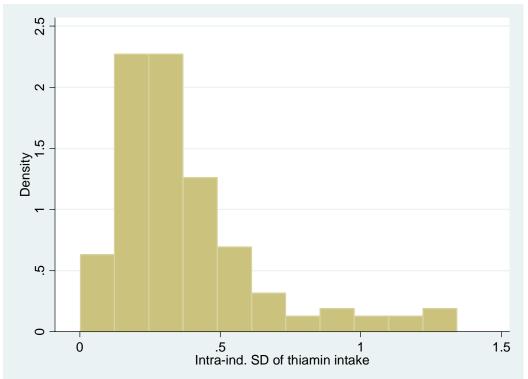




Figure N11. Distribution of Zinc Intakes, NPNL Women

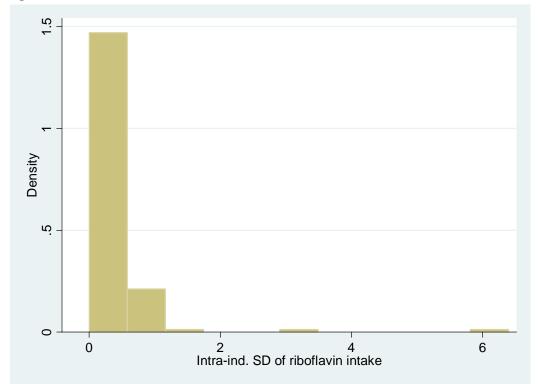
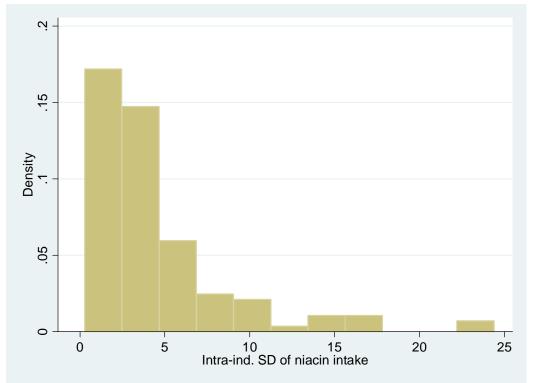



Figure N13. Intra-Individual SD of Riboflavin Intakes, NPNL Women

Figure N14. Intra-Individual SD of Niacin Intakes, NPNL Women

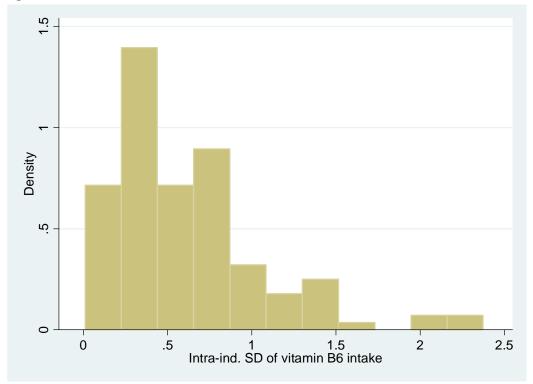
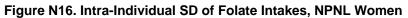
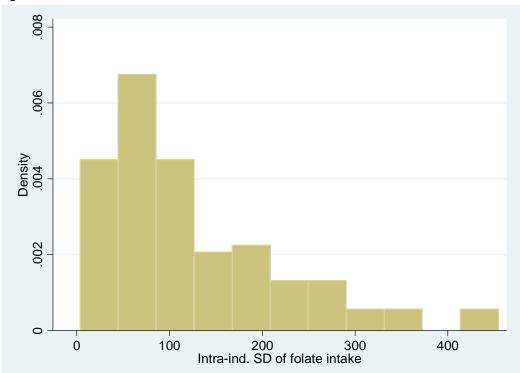




Figure N15. Intra-Individual SD of Vitamin B6 Intakes, NPNL Women

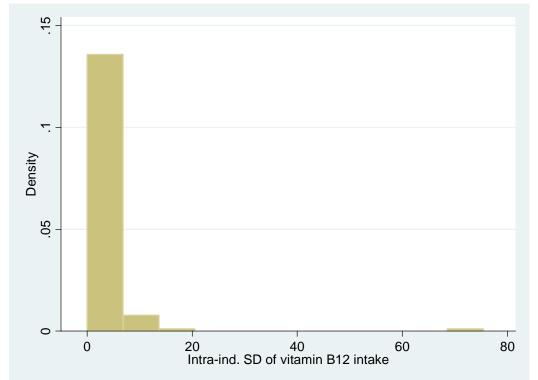
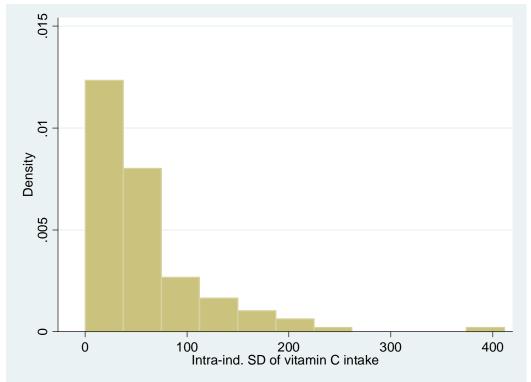



Figure N17. Intra-Individual SD of Vitamin B12 Intakes, NPNL Women

Figure N18. Intra-Individual SD of Vitamin C Intakes, NPNL Women

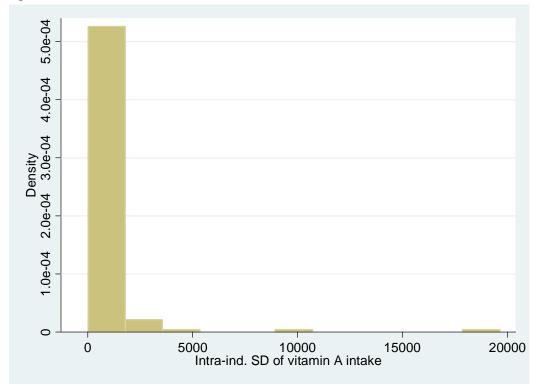
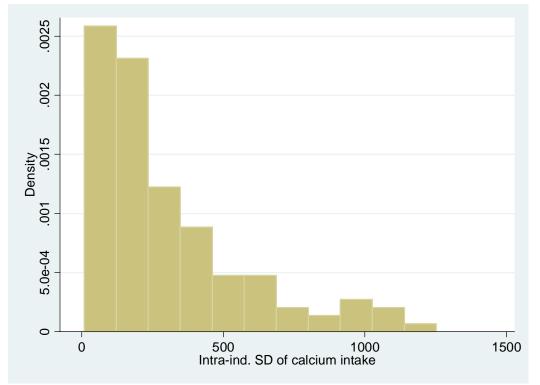



Figure N19. Intra-Individual SD of Vitamin A Intakes, NPNL Women

Figure N20. Intra-Individual SD of Calcium Intakes, NPNL Women

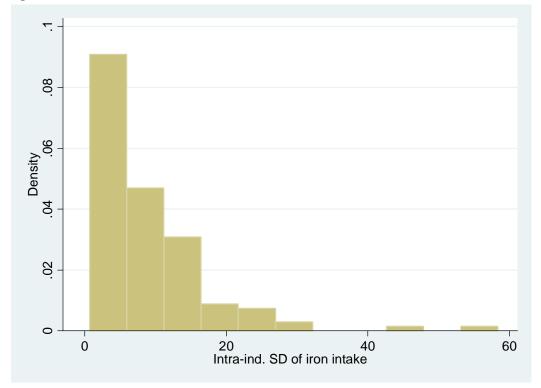
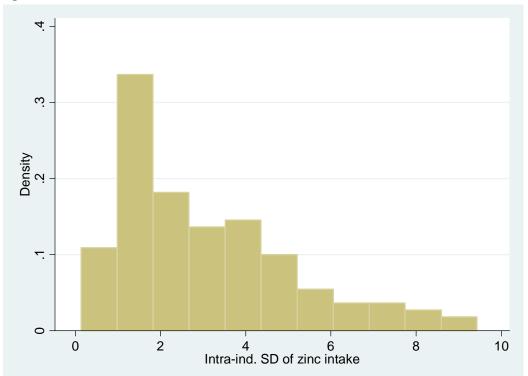



Figure N21. Intra-Individual SD of Iron Intakes, NPNL Women

Figure N22. Intra-Individual SD of Zinc Intakes, NPNL Women

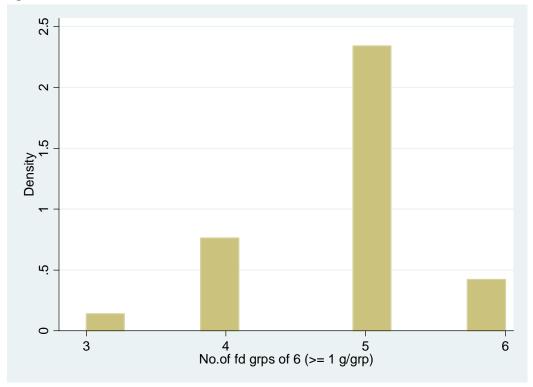
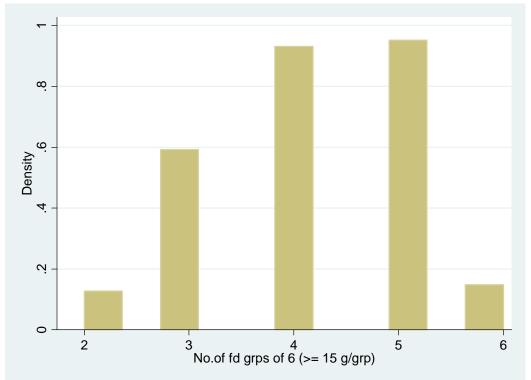



Figure N23. Distribution of Scores for FGI-6, NPNL Women

Figure N24. Distribution of Scores for FGI-6R, NPNL Women

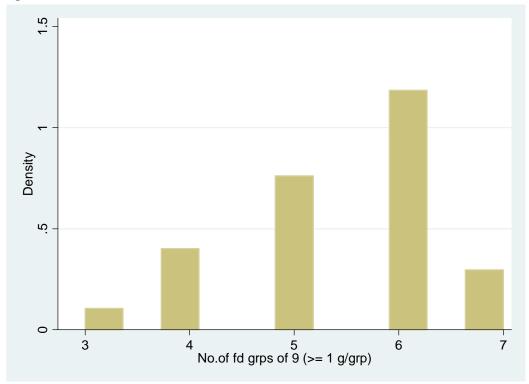
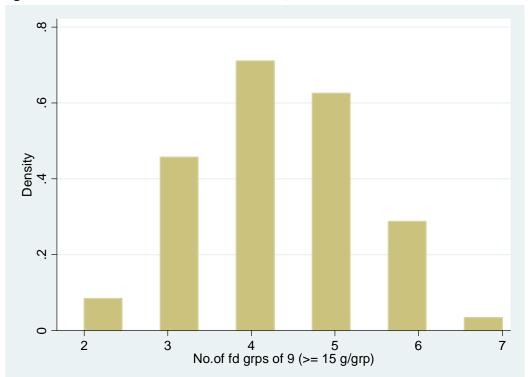



Figure N25. Distribution of Scores for FGI-9, NPNL Women

Figure N26. Distribution of Scores for FGI-9R, NPNL Women

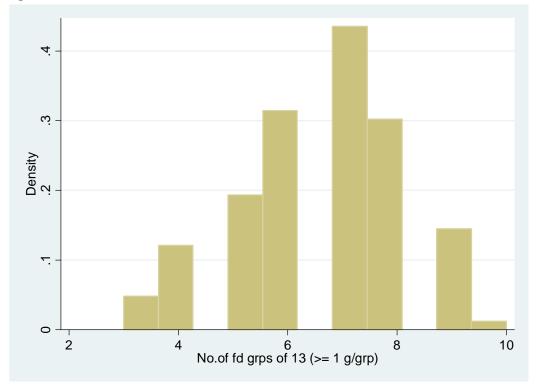
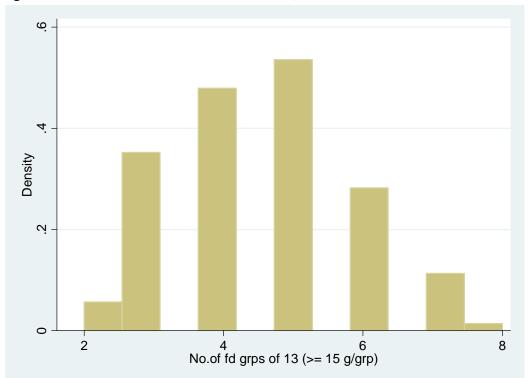



Figure N27. Distribution of Scores for FGI-13, NPNL Women

Figure N28. Distribution of Scores for FGI-13R, NPNL Women

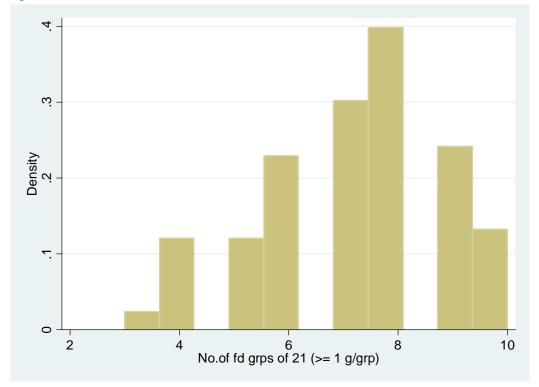
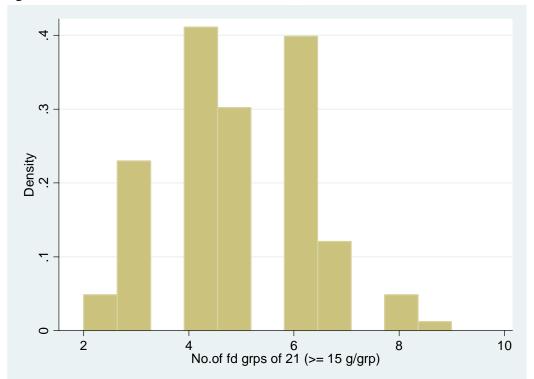
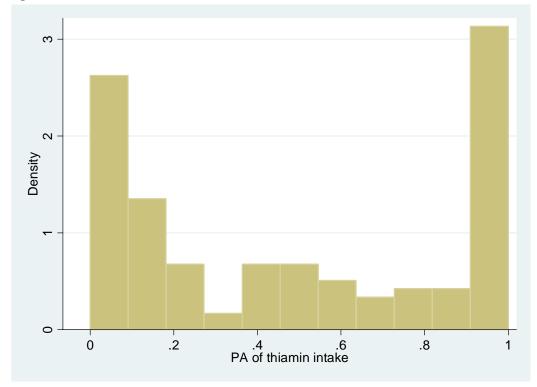



Figure N29. Distribution of Scores for FGI-21, NPNL Women


Figure N30. Distribution of Scores for FGI-21R, NPNL Women

Number of	Diversity indicators								
food groups eaten	FGI-6	FGI-6R	FGI-9	FGI-9R	FGI-13	FGI-13R	FGI-21	FGI-21R	
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	0.0	4.6	0.0	3.7	0.0	3.0	0.0	3.3	
3	3.7	22.1	3.7	21.4	3.0	19.9	1.3	14.8	
4	20.2	33.8	14.6	32.0	7.9	25.1	8.1	26.4	
5	65.6	34.6	28.9	28.6	11.2	29.7	6.9	18.9	
6	10.5	4.9	43.4	13.1	20.6	15.7	14.6	25.0	
7			9.4	1.3	27.7	5.8	19.9	7.4	
8			0.0	0.0	20.2	0.6	25.8	3.6	
9			0.0	0.0	8.9	0.0	15.2	0.6	
10					0.6	0.0	8.2	0.0	
11					0.0	0.0	0.0	0.0	
12					0.0	0.0	0.0	0.0	
13					0.0	0.0	0.0	0.0	
14							0.0	0.0	
15							0.0	0.0	
16							0.0	0.0	
17							0.0	0.0	
18							0.0	0.0	
19							0.0	0.0	
20							0.0	0.0	
21							0.0	0.0	

Table N6. Percent of Observation Days at Each Food Group Diversity Score, NPNL Women, R2

Figure N31. Distribution of PA for Thiamin, NPNL Women

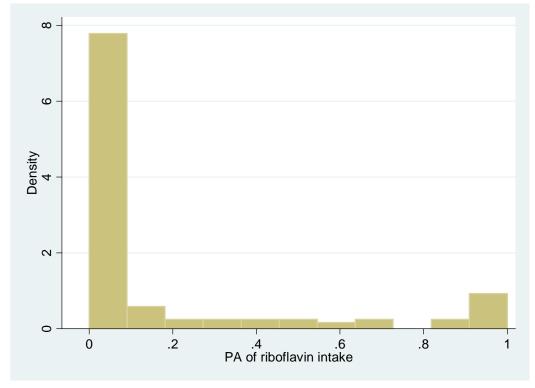
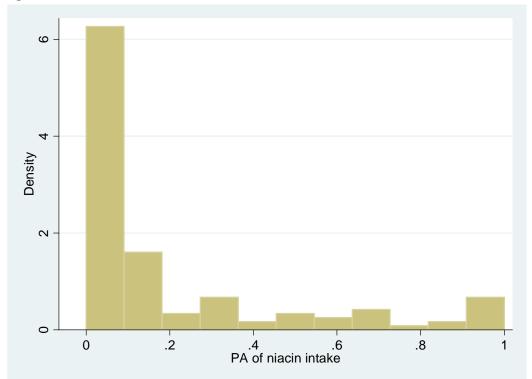



Figure N32. Distribution of PA for Riboflavin, NPNL Women

Figure N33. Distribution of PA for Niacin, NPNL Women

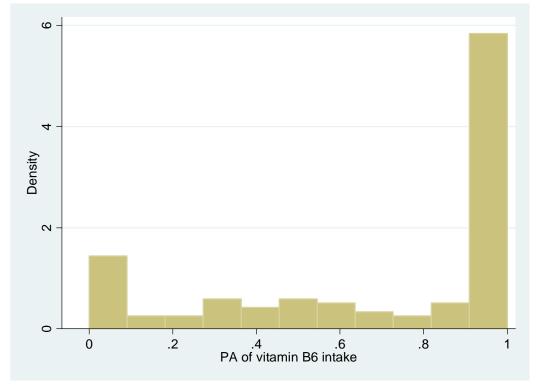
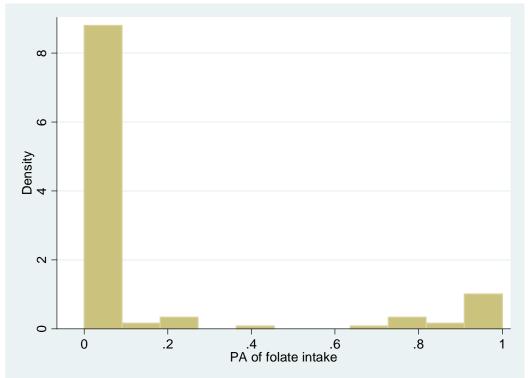



Figure N34. Distribution of PA for Vitamin B6, NPNL Women

Figure N35. Distribution of PA for Folate, NPNL Women

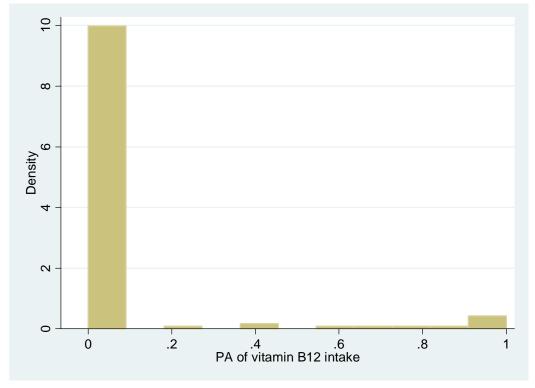
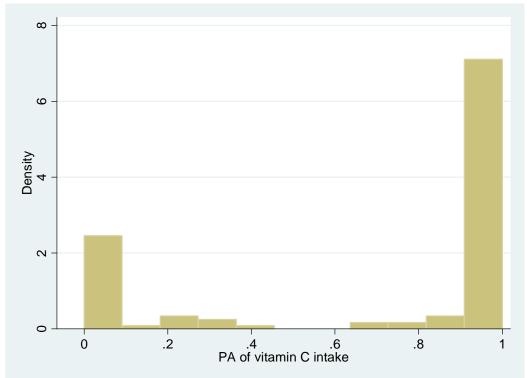



Figure N36. Distribution of PA for Vitamin B12, NPNL Women

Figure N37. Distribution of PA for Vitamin C, NPNL Women

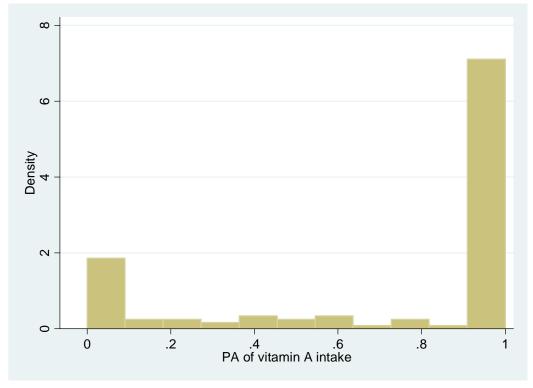
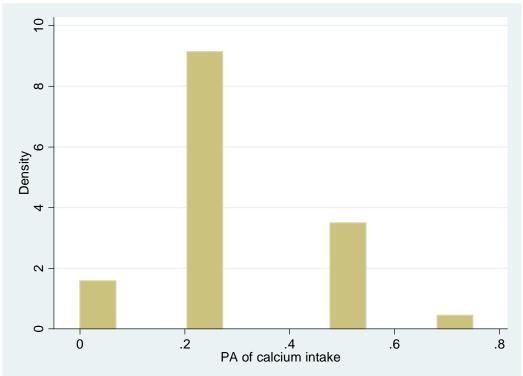



Figure N38. Distribution of PA for Vitamin A, NPNL Women

Figure N39. Distribution of PA for Calcium, NPNL Women

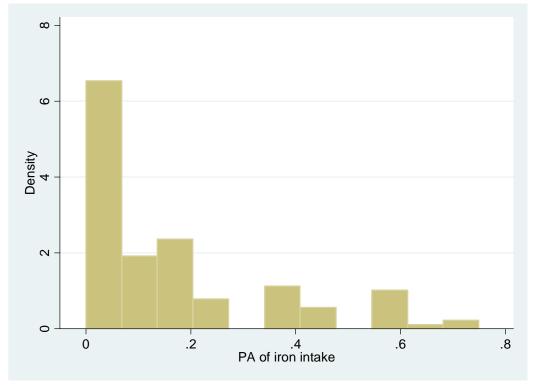
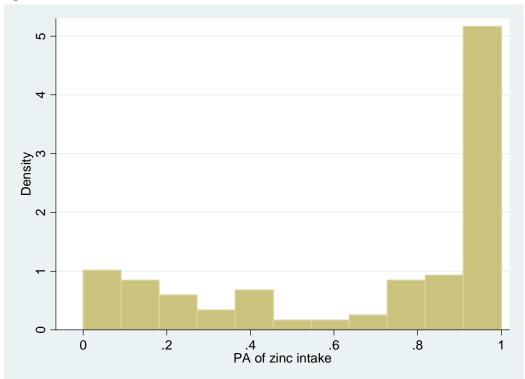



Figure N40. Distribution of PA for Iron, NPNL Women

Figure N41. Distribution of PA for Zinc, NPNL Women

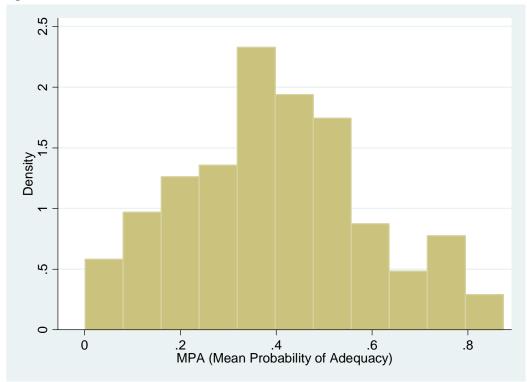


Figure N42. Distribution of MPA, NPNL Women

Appendix 3. List of Sub-Groups of the Qualitative Dietary Diversity Questionnaire

Cereals Other tubers and roots Soumbala¹ Vitamin A-rich yellow/orange/red vegetables Tomato puree Vitamin A-rich fruits Red palm oil Any fried food ³ Eggs Pork meat and processed meat Liver Fish powder⁴ Fresh or tined fish and other seafood Added sugar Sweet beverages Alcohol drinks

Orange-fleshed sweet potato Legumes Nuts and seeds (including soya) Vitamin A-rich dark green leafy vegetables Other vegetables Other fruits (or pure fruit juices) Other oils and vegetable fats Animal-source fats Milk, yogurt, cheese, or any dairy Poultry Other meats (including offal's) Dried or smoked fish Salt or -Maggi" cube or sauce Sweet products and pastries Tea or coffee Other

No minimal quantity was required for a group to be counted. However, this list was designed to separate consumptions of very small quantities of ingredients poured in sauces (e.g., tomato puree, fish powder, soumbala) from significant consumption of foods from the same sub-group.

Each woman involved in the study was asked to recall all the dishes, snacks or other foods she had eaten during the 24 hours preceding the survey, in chronological order, regardless of whether the food was eaten inside or outside the compound. From a practical point of view, we first let the woman spontaneously describe her food consumption and then we prompted her to be sure that no meal or snacks had been forgotten. Next the detailed list of all the ingredients of the dishes, snacks or other foods mentioned was collected and corresponding sub-groups were ticked. Once the recall was finished, women were prompted for food sub-groups that were not mentioned.

¹ Soumbala is a local condiment made out of fermented seeds or nuts, most often African locust beans seeds or groundnuts. This particular group was recorded separately to avoid these condiments being counted as a real consumption of groundnuts, or soya, etc. ² As with soumbala, this group was also recorded to separate tomato puree used as a condiment from real

consumption of fresh tomatoes. ³ This group was separated from the preceding to remind surveyors to record oil consumed in fried foods.

⁴ Fish powder used in small quantity, as a condiment.

Appendix 4. Tables for First and Third Observation Days

	n	Mean	SD	Median	Range
Age (year)	180	31.2	7.4	30.0	17.0-49.0
Height (cm)	164	163.2	6.1	163.0	150.0-182.0
Weight (kg)	163	61.6	11.4	60.3	38.2-102.1
BMI	163	23.1	3.9	22.6	16.1-37.1
Ever attended school	181	46.5			
% Lactating	181	20.2			
% Pregnant	181	7.4			
	n	Percent			
BMI <16	0	0.0			
BMI 16-16.9	6	3.8			
BMI 17-18.49	8	5.2			
BMI 18.5-24.9	103	62.4			
BMI 25-29.9	39	24.1			
BMI ≥ 30	7	4.5			

Table A4-1a. Description of Sample, All Women, R1

Table A4-2a. Energy and Macronutrient Intakes, All Women, R1

					Percent of
	Mean	SD	Median	Range	kcal
Energy (kcal)	2,190.1	829.5	2,019.5	459.1-4,558.5	
Protein (g)	57.7	26.7	52.8	4.1-153.3	10.6
Animal source (g)	14.1	16.1	8.2	0.0-104.3	2.6
Plant source (g)	43.7	21.8	39.9	4.1-121.6	8.0
Total carbohydrate (g)	358.1	141.2	341.8	66.0-879.5	65.8
Sugars (g)	67.9	55.7	54.0	2.6-282.5	12.7
Total fat (g)	56.7	40.0	46.2	4.2-262.1	22.6
Saturated fat (g)	-	-	-	-	-

Nutrient	Mean	SD	Median	EAR ^b	SD ^b
Energy	2,190.1	829.5	2,019.5		
Protein (All Sources) (% of kcal)	10.60	2.93	10.29		
Protein from animal sources (% of kcal)	2.62	2.52	1.67		
Total carbohydrate (% of kcal)	65.84	10.45	67.62		
Sugars (% of kcal)	12.69	10.12	9.53		
Total fat (% of kcal)	22.59	10.30	21.38		
Saturated fat (% of kcal)					
Thiamin (mg/d)	1.00	0.54	0.92	0.9	0.09
Riboflavin (mg/d)	0.72	0.40	0.63	0.9	0.09
Niacin (mg/d)	10.08	6.54	9.02	11	1.65
Vitamin B6 (mg/d)	1.50	0.86	1.29	1.1	0.11
Folate (µg/d)	248.53	188.00	185.20	320	32
Vitamin B12 (µg/d)	1.11	2.19	0.43	2.0	0.2
Vitamin C (mg/d)	86.16	85.37	53.95	30	3.0
Vitamin A (RE/d)	795.39	942.37	461.12	270	54
Calcium (mg/d)	515.76	422.17	402.02	^b	^b
lron (mg/d)	0.26	16.48	19.24	See tables A6-	2 & A6-3
Zinc (mg/d)	8.94	4.18	8.26	15% bioavail: 6.67	1.67
MPA across 11 micronutrients	0.38	0.19	0.35		

^a EAR and SD are presented for the predominant physiological group i.e., NPNL women (19-65 years); however, the sample also includes pregnant women (7.2 percent), lactating women (19.3 percent) and adolescent girls (1.7 percent). See table A6-1 for sources of data. ^b There is no EAR and no SD for calcium; 1000 mg is the Adequate Intake (AI).

	n	Mean	SD	Median	Range
Age (year)	132	31.8	7.9	30.0	17.0-49.0
Height (cm)	129	163.3	6.1	163.0	150.0-182.0
Weight (kg)	128	63.0	11.8	61.5	38.2-102.1
BMI	128	23.6	4.1	23.1	16.1-37.1
Ever attended school	133	51.3			
% Lactating	133	0.0			
% Pregnant	133	0.0			
	n	Percent			
BMI <16	0	0.0			
BMI 16-16.9	4	3.4			
BMI 17-18.49	6	5.2			
BMI 18.5-24.9	77	59.1			
BMI 25-29.9	34	26.5			
BMI ≥ 30	7	5.8			

Table A4-N1a. Description of Sample, NPNL Women, R1

Table A1-N2a. Energy and Macronutrient Intakes, NPNL Women, R1

					Percent of
	Mean	SD	Median	Range	kcal
Energy (kcal)	2,092.6	843.6	1,932.5	459.1-4,558.5	
Protein (g)	55.8	28.9	49.6	4.1-153.3	10.6
Animal source (g)	15.3	18.5	8.2	0.0-104.3	2.9
Plant source (g)	40.5	21.8	37.1	4.1-121.6	7.8
Total carbohydrate (g)	334.5	132.9	324.1	66.0-719.6	64.9
Sugars (g)	64.0	50.8	53.3	2.6-239.6	12.8
Total fat (g)	57.3	44.7	46.2	4.2-262.1	23.4
Saturated fat (g)	-	-	-	-	-

Table A4-N8a. Mean and Median Nutrient Intake, NPNL Women, R1

Nutrient	Mean	SD	Median	EAR ^a	SD ^a
Energy	2,092.6	843.6	1,932.5		
Protein (All Sources) (% of kcal)	10.65	3.15	10.32		
Protein from animal sources (% of kcal)	2.89	2.83	2.10		
Total carbohydrate (% of kcal)	64.92	11.17	66.01		
Sugars (% of kcal)	12.79	10.33	9.73		
Total fat (% of kcal)	23.42	11.17	22.00		
Saturated fat (% of kcal)					
Thiamin (mg/d)	0.97	0.56	0.87	0.9	0.09
Riboflavin (mg/d)	0.69	0.38	0.61	0.9	0.09
Niacin (mg/d)	9.79	7.26	8.18	11	1.65
Vitamin B6 (mg/d)	1.45	0.85	1.27	1.1	0.11
Folate (µg/d)	238.22	188.91	177.42	320	32
Vitamin B12 (µg/d)	1.22	2.51	0.41	2.0	0.2
Vitamin C (mg/d)	85.33	82.09	54.41	30	3.0
Vitamin A (RE/d)	782.18	928.89	473.63	270	54
Calcium (mg/d)	509.63	438.78	399.42	^b	b
Iron (mg/d)	21.04	15.75	18.16	See tables A6-2	2 & A6-3
Zinc (mg/d)	8.35	4.34	7.51	15% bioavail: 6.67	1.67
MPA across 11 micronutrients	0.40	0.20	0.39		

^a EAR and SD are presented for the predominant physiological group i.e., NPNL women (19-65 years); however, the sample also includes adolescent girls (2.3 percent). See table A6-1 for sources of data. ^b There is no EAR and no SD for calcium; 1000 mg is the Adequate Intake (AI).

	n	Mean	SD	Median	Range
Age (year)	172	31.2	7.4	29.0	17.0-49.0
Height (cm)	157	163.1	6.0	163.0	150.0-180.0
Weight (kg)	156	61.4	11.3	60.3	38.2-102.1
BMI	156	23.1	4.0	22.4	16.1-37.1
Ever attended school	173	45.7			
% Lactating	173	21.2			
% Pregnant	173	7.1			
	n	Percent			
BMI <16	0	0.0			
BMI 16-16.9	6	4.0			
BMI 17-18.49	8	5.4			
BMI 18.5-24.9	98	62.1			
BMI 25-29.9	37	23.7			
BMI ≥ 30	7	4.7			

Table A4-1b. Description of Sample, All Women, R3

Table A4-2b. Energy and Macronutrient Intakes, All Women, R3

					Percent of
	Mean	SD	Median	Range	kcal
Energy (kcal)	2,267.9	905.3	2,128.2	813.6-6,179.6	
Protein (g)	59.5	28.3	54.2	13.2-228.4	10.7
Animal source (g)	15.8	23.4	8.0	0.0-207.9	2.8
Plant source (g)	43.7	19.2	40.3	9.1-101.8	7.9
Total carbohydrate (g)	376.4	169.9	354.1	60.3-1,193.5	66.3
Sugars (g)	86.1	93.4	66.7	4.9-748.2	14.3
Total fat (g)	55.7	35.9	47.8	2.6-253.6	22.0
Saturated fat (g)	-	-	-	-	-

Table A4-8b. Mean and Median Nutrient Intake, All Women, R3

Nutrient	Mean	SD	Median	EAR ^a	SD ^a
Energy	2,267.9	905.3	2,128.2		
Protein (All Sources) (% of kcal)	10.73	3.40	10.29		
Protein from animal sources (% of kcal)	2.80	3.44	1.57		
Total carbohydrate (% of kcal)	66.33	11.28	67.88		
Sugars (% of kcal)	14.32	10.18	11.99		
Total fat (% of kcal)	22.00	10.93	20.14		
Saturated fat (% of kcal)					
Thiamin (mg/d)	1.01	0.47	0.91	0.9	0.09
Riboflavin (mg/d)	0.86	0.89	0.67	0.9	0.09
Niacin (mg/d)	10.42	6.11	8.99	11	1.65
Vitamin B6 (mg/d)	1.55	0.95	1.37	1.1	0.11
Folate (µg/d)	251.22	173.81	210.67	320	32
Vitamin B12 (µg/d)	3.06	17.87	0.45	2.0	0.2
Vitamin C (mg/d)	94.00	96.90	65.54	30	3.0
Vitamin A (RĚ/d)	1,123.57	2,474.39	547.07	270	54
Calcium (mg/d)	528.57	403.22	455.54	^b	b
ron (mg/d)	23.09	13.17	20.00	See tables A6-2	2 & A6-3
Zinc (mg/d)	9.31	4.02	8.62	15% bioavail: 6.67	1.67
MPA across 11 micronutrients	0.38	0.19	0.35		

^a EAR and SD are presented for the predominant physiological group i.e., NPNL women (19-65 years); however, the sample also includes pregnant women (6.9 percent), lactating women (20.2 percent) and adolescent girls (1.2 percent). See table A6-1 for sources of data. ^b There is no EAR and no SD for calcium; 1000mg is the Adequate Intake (AI).

	n	Mean	SD	Median	Range
Age (year)	125	32.0	7.9	30.0	17.0-49.0
Height (cm)	122	163.3	5.9	163.0	150.0-178.0
Weight (kg)	121	62.7	11.7	61.5	38.2-102.1
BMI	121	23.6	4.2	23.1	16.1-37.1
Ever attended school	126	50.9			
% Lactating	126	0.0			
% Pregnant	126	0.0			
	n	Percent			
BMI <16	0	0.0			
BMI 16-16.9	4	3.6			
BMI 17-18.49	6	5.5			
BMI 18.5-24.9	72	58.5			
BMI 25-29.9	32	26.3			
BMI ≥ 30	7	6.2			

Table A4-N1b. Description of Sample, NPNL Women, R3

Table A4-N2b. Energy and Macronutrient Intakes, NPNL Women, R3

					Percent of
	Mean	SD	Median	Range	kcal
Energy (kcal)	2,071.6	740.2	2,023.6	813.6-6,179.6	
Protein (g)	57.0	29.3	51.9	13.2-228.4	11.1
Animal source (g)	17.5	26.8	8.1	0.0-207.9	3.2
Plant source (g)	39.5	17.4	38.0	9.1-101.8	7.9
Total carbohydrate (g)	336.0	130.0	327.9	60.3-913.8	65.3
Sugars (g)	78.9	67.0	59.7	4.9-434.3	14.6
Total fat (g)	53.7	34.5	46.9	2.6-253.6	22.8
Saturated fat (g)	-	-	-	-	-

Table A4-N8b. Mean and Median Nutrient Intake, NPNL Women, R3

Nutrient	Mean	SD	Median	EAR ^b	SD ^D
Energy	2,071.6	740.2	2,023.6		
Protein (All Sources) (% of kcal)	11.09	3.76	10.56		
Protein from animal sources (% of kcal)	3.21	3.96	1.71		
Total carbohydrate (% of kcal)	65.33	11.57	67.54		
Sugars (% of kcal)	14.59	10.22	12.58		
Total fat (% of kcal)	22.78	11.17	21.41		
Saturated fat (% of kcal)					
Thiamin (mg/d)	0.93	0.42	0.83	0.9	0.09
Riboflavin (mg/d)	0.82	1.00	0.63	0.9	0.09
Niacin (mg/d)	9.76	6.19	8.14	11	1.65
Vitamin B6 (mg/d)	1.37	0.77	1.24	1.1	0.11
Folate (µg/d)	237.72	169.86	179.03	320	32
Vitamin B12 (µg/d)	3.98	21.21	0.45	2.0	0.2
Vitamin C (mg/d)	85.11	94.06	55.17	30	3.0
Vitamin A (RE/d)	1,150.37	2,864.68	514.44	270	54
Calcium (mg/d)	494.45	381.21	389.97	d	d
Iron (mg/d)	20.90	11.64	18.61	See tables A6-2 8	A6-3
Zinc (mg/d)	8.49	3.57	8.17	15% bioavail: 6.67	1.67
MPA across 11 micronutrients	0.39	0.19	0.39		

^bEAR and SD are presented for the predominant physiological group i.e., NPNL women (19-65 years); however, the sample also includes adolescent girls (1.6 percent). See table A6-1 for sources of data. ^d There is no EAR and no SD for calcium; 1000 mg is the Adequate Intake (AI).

Appendix 5. Women's Food Group Recall in DHS 5

579 Now I would like to ask you about (other) liquids or foods that (NAME FROM 577)/you may have had yesterday during the day or night. I am interested in whether your child/you had the item even if it was combined with other foods. **(15)**

Did (NAME FROM 577)/you drink (eat):

- a) Milk such as tinned, powdered, or fresh animal milk?
- b) Tea or coffee?
- c) Any other liquids?

d) Bread, rice, noodles, or other foods made from grains? **(16)**

e) Pumpkin, carrots, squash, or sweet potatoes that are yellow or orange inside? (17)

f) White potatoes, white yams, manioc, cassava, or any other foods made from roots?

g) Any dark green, leafy vegetables? (18)

h) Ripe mangoes, papayas, or [INSERT ANY OTHER LOCALLY AVAILABLE VITAMIN A-RICH FRUITS]?

i) Any other fruits or vegetables?

j) Liver, kidney, heart, or other organ meats?

k) Any meat, such as beef, pork, lamb, goat, chicken, or duck?

I) Eggs?

m) Fresh or dried fish or shellfish?

n) Any foods made from beans, peas, lentils, or nuts?

o) Cheese, yogurt, or other milk products?

p) Any oil, fats, or butter, or foods made with any of these?

q) Any sugary foods such as chocolates, sweets, candies, pastries, cakes, or biscuits?

r) Any other solid or semi-solid foods?

—	CHILI			МОТН	HER	
		NO	DK		NO	DK
а	1	2	8	1	2	8
		_	_		_	
b	1	2	8	1	2	8
с	1	2	8	1	2	8
	1			+		
d	1	2	8	1	2	8
е	1	2	8	1	2	8
f	1	2	8	1	2	8
			0	<u> </u>	2	
g	1	2	8	1	2	8
h	1	2	8	1	2	8
i	1	2	8	1	2	8
			0	+		
j	1	2	8	1	2	8
k	1	2	8	1	2	8
I	1	2	8	1	2	8
!			0	+		
m	1	2	8	1	2	8
n	1	2	8	1	2	8
	1	2	0	1	2	0
0	1	2	8	1	2	8
р	1	2	8	1	2	8
q	1	2	8	1	2	8
Ч	`	-		.	-	
r	1	2	8	1	2	8
L				<u> </u>		

¹⁵ A separate category for any foods made with red palm oil, palm nut, or palm nut pulp sauce must be added in countries where these items are consumed. A separate category for any grubs, snails, insects or other small protein food must be added in countries where these items are eaten. Items in each food group should be modified to include only those foods that are locally available and/or consumed in the country. Local terms should be used.

¹⁶ Grains include millet, sorghum, maize, rice, wheat, or other local grains. Start with local foods (e.g., ugali, nshima, fufu, chapatti) then follow with bread, rice, noodles, etc.

¹⁷ Items in this category should be modified to include only vitamin A rich tubers, starches, or yellow/orange/red vegetables that are consumed in the country.

¹⁸ These include cassava leaves, bean leaves, kale, spinach, pepper leaves, taro leaves, amaranth leaves or other dark green, leafy vegetables.

Source: ORC Macro DHS website at: <u>http://www.measuredhs.com/aboutsurveys/dhs/questionnaires.cfm</u>. Accessed September 7, 2007.

Appendix 6: Estimated Average Requirements

Note that WHO/FAO requirements are not given separately for pregnant or lactating adolescents. For girls aged 15-18 who were pregnant or lactating, we used the requirements for pregnant/lactating adult women for most nutrients, as the requirements are higher. The exception to this is calcium, for which the requirement is higher for adolescents (1,300 mg/d), so this value (US AI) was used for pregnant and lactating adolescents.

	Females 19-50 y	/ears	Females 15-18	years	Pregnant wor	nen	Lactating wome	en
	EAR	SD °	EAR	SD °	EAR	SD °	EAR	SD °
Vit A (RE/d) ^a	270 ^e	54	365 ^e	73	370 ^e	74	450 ^e	90
Vit C (mg/d)	38 ^f	3.8	33 ^f	3.3	46 ^f	4.6	58 ^f	5.8
Thiamin (mg/d)	0.9 ^f	0.09	0.9 ^f	0.09	1.2 ^f	0.12	1.2 ^f	0.12
Riboflavin (mg/d)	0.9 ^f	0.09	0.8 ^f	0.08	1.2 ^f	0.12	1.3 ^f	0.13
Niacin (mg/d)	11 ^f	1.6	12 ^f	1.8	14 ^f	2.1	13 ^f	2.0
Vit B ₆ (mg/d)	1.1 ^f	0.11	1.0 ^f	0.1	1.6 ^f	0.16	1.7 ^f	0.17
Folate (µg/d)	320 ^e	32	330 ^e	33	520 ^e	52.0	450 ^e	45.0
Vit B ₁₂ (µg/d)	2.0 ^e	0.2	2.0 ^e	0.2	2.2 ^e	0.22	2.4 ^e	0.24
Calcium (mg/d) ^g	1,000	-	1,300	-	1,000		1,000	
Iron (mg/d)	See table A6-2	_	See Table A6-3		22 ^h	2.07	10% bioavail: 11.7 ¹	3.51
non (ng/u)	See lable A0-2	-	See Table A0-5	-	22	2.07	5% bioavail: 23.40	7.02
Zinc (mg/d)	Lower bioavail: 7	0.88	Lower bioavail: 9	1.13	Lower bioavail: 10	1.25	Lower bioavail: 8	1.00
Zinc (ing/u)	Higher bioavail: 6 ^ĸ	0.75	Higher bioavail: 7	0.88	Higher bioavail: 8	1.0	Higher bioavail: 7	0.88

Table A6-1. EAR to be Used for Assessing PA^{a, b}

^a All values are taken from WHO/FAO (2004) unless otherwise stated.

^b Values for EAR are adjusted for an assumed bioavailability (WHO/FAO 2004). Thus, EAR refers to intake of the nutrients and not the physiological need for the absorbed nutrient.

^c All SDs were calculated based on EAR and CV (SD = CV*EAR/100). CV is assumed to be 10 percent for all micronutrients except 15 percent for niacin (IOM 2000a), 20 percent for vitamin A (IOM 2000a), and 12.5 percent for zinc (IZiNCG 2004), 9.4 percent and 30 percent for iron, for pregnant and lactating women, respectively (IOM 2000a).

^d One μg RE is equal to 1 μg all-trans-retinol, 6 μg β-carotene and 12 μg α-carotene or β-cryptoxanthin (WHO/FAO 2004). Note also the EAR for vitamin A refers to intake adequate to prevent the appearance of deficiency-related syndromes (WHO/FAO 2004).

^e EAR taken from WHO/FAO (2004).

^f EAR back-calculated from RNI (Recommended Nutrient Intake) (WHO/FAO 2004).

^g This is not an EAR, but rather AI from IOM (1997). Following Foote et al. (2004), we calculate probabilities of adequacy to be 0 percent when intake \leq 1/4 of the AI; 25 percent for intakes > 1/4 and \leq 1/2 of the AI; 50 percent for intakes > 1/2 and \leq 3/4 of the AI; 75 percent for intakes > 3/4 and \leq AI; and 100 percent for intakes above the AI.

^h EAR for iron intake, as presented in IOM (2000a, page 347). IOM estimates that bioavailability is 18 percent in the first trimester and 25 percent in the second and third. As information on month of pregnancy will not be available in most data sets, a weighted average of 23 percent absorption was used for all pregnant women.

ⁱ Gives EAR for iron for two levels of absorption for lactating women, based on IOM (2006). According to WHO/FAO (2004), either a very low (5 percent) or low (10 percent) absorption level can be assumed in a developing country setting.

¹This is the estimated median requirement of zinc to be used for diets with a lower bioavailability (unrefined, cereal based diets), as suggested by IZINCG (2004). ^kThis is the estimated median requirement of zinc to be used for diets with a higher bioavailability (mixed or refined vegetarian diets), as suggested by IZINCG (2004).

PA	Total absorbed iron	10% bioavailability	5% bioavailability
0	<0.796	<7.96	<15.91
0.04	0.796-0.879	7.96-8.79	15.91-17.59
0.07	0.880-0.981	8.80-9.81	17.60-19.65
0.15	0.982-1.120	9.82-11.20	19.66-22.42
0.25	1.121-1.237	11.21-12.37	22.43-24.76
0.35	1.238-1.343	12.38-13.43	24.77-26.88
0.45	1.344-1.453	13.44-14.53	26.89-29.08
0.55	1.454-1.577	14.54-15.77	29.09-31.56
0.65	1.578-1.734	15.78-17.34	31.57-34.69
0.75	1.735-1.948	17.35-19.48	34.70-38.98
0.85	1.949-2.349	19.49-23.49	38.99-47.01
0.92	2.350-2.789	23.50-27.89	47.02-55.79
0.96	2.790-3.281	27.90-32.81	55.80-65.63
1	>3.28	>32.81	>65.63

Table A6-2. PA of Iron (mg/d) and Associated Ranges of Usual Intake in Adult Women Not Using Oral Contraceptives (OC) ^a

^a This table was adapted from Table G-7 in IOM (2006), which gives PA for various levels of iron intake, assuming 18 percent absorption. In order to construct the table above, the associated level of *absorbed* iron was back-calculated from Table G-7. The table above presents usual intake levels to achieve the same amount of absorbed iron, but adjusted for absorption at two lower levels (10 percent and 5 percent).

Table A6-3. PA of Iron	i (mg/d) and Associated I	Ranges of Usual Intake	e in Adolescent Girls (15-18	
Years) Not Using Oral	Contraceptives (OC) ^a	-		
PΔ	Total absorbed iron	10% bioavailability	5% bioavailability	

PA	Total absorbed iron	10% bioavailability	5% bioavailability
0	<0.833	<8.33	<16.67
0.04	0.833-0.911	8.33-9.11	16.67-18.22
0.07	0.912-1.010	9.12-10.10	18.23-20.20
0.15	1.011-1.136	10.11-11.36	20.21-22.72
0.25	1.137-12.37	11.37-12.37	22.73-24.73
0.35	1.238-1.330.	12.38-13.30	24.74-26.60
0.45	1.331-1.424	13.31-14.24	26.61-28.49
0.55	1.425-1.526	14.25-15.26	28.50-30.53
0.65	1.526-1.647	15.27-16.47	30.54-32.94
0.75	1.648-1.805	16.48-18.05	32.95-26.11
0.85	1.806-2.077	18.06-20.77	36.12-41.54
0.92	2.078-2.354	20.78-23.54	41.55-47.09
0.96	2.355-2.664	23.55-26.64	47.10-53.28
1	>2.664	>26.64	>53.28

^a This table was adapted from Table G-6 in IOM (2006), which gives PA for various levels of iron intake, assuming 18 percent absorption. In order to construct the table above, the associated level of *absorbed* iron was back-calculated from Table G-6. The table above presents usual intake levels to achieve the same amount of absorbed iron, but adjusted for absorption at two lower levels (10 percent and 5 percent).

DISCUSSION ON THE SELECTION OF EAR AND CV

Vitamin A

According to WHO/FAO,¹ the CV for vitamin A requirements is unknown. IOM, however, has used 20 percent. The WDDP uses the EAR of WHO/FAO with a CV of 20 percent. For adolescents (ages 15-18), WHO/FAO give a range for the EAR of 330-400 µg/d. The WDDP uses the mid-point of this range.

Calcium

WHO/FAO's EAR for calcium is quite high, and based on WDDP working group discussions, the justification for these high levels does not appear to be strong/persuasive. The group therefore proposed to use the method described in Foote et al.,² which takes the AI of 1,000 mg/d as a starting point (or 1,300 mg/d for adolescents). The DRI include AI when insufficient evidence is available to set an EAR and CV. The AI is an observed estimate of nutrient intake by a defined group of healthy people. Some seemingly healthy individuals may require higher intakes and some individuals may be at low risk on even lower intakes. The AI is believed to cover their needs, but lack of data or uncertainty in the data prevent being able to specify with confidence the percentage of individuals covered by this intake.³ An individual with a usual intake of calcium at or above AI can be assumed to have an AI. Foote et al.⁴ estimated probabilities of adequacy as follows:

0 percent when intake \leq 1/4 of the AI, 25 percent for intakes > 1/4 and \leq 1/2 of the AI, 50 percent for intakes > 1/2 and \leq 3/4 of the AI, 75 percent for intakes > 3/4 and \leq AI, 100 percent for intakes above the AI.

The AI is the same for pregnant and lactating women and adolescents and for NPNL women (1,000 mg/d for women and 1,300 mg/d for adolescents).

Iron

For estimating the probability of AI of iron for **NPNL women** the WDDP used a modified version of the PA tables in IOM.⁵ The table is based on an assumption of 18 percent absorption, which is higher than expected in most developing country settings. The WDDP adjusted the table to find the PA for the two levels of absorption: five percent and ten percent. The tables above (one for adult women and one for adolescents) are thus entirely based on IOM.⁶ Each researcher must select an assumed level of absorption (five percent or ten percent), based on his/her own expertise/knowledge of the local food intake.

For pregnant and lactating women, CVs have been given by the IOM. We therefore used the usual method of EAR for estimating PA for these two groups.

For pregnant women, the WDDP used the EAR suggested by IOM, because WHO/FAO⁷ does not provide a requirement level for pregnant women. However, WHO and FAO state that iron absorption can increase up to approximately four times NPNL levels by the third trimester. Therefore, using IOM requirements – which assume 18 percent absorption in first trimester and 25 percent absorption in second and third

² 2004.

¹ 2004.

³ IOM 1997.

⁴ 2004.

⁵ Table I-6 and I-7; 2000b.

⁶ 2000b.

⁷ 2004.

trimesters – seems reasonable, in the absence of more specific guidance from WHO and FAO on absorption during pregnancy.

For lactating women, IOM gives an EAR for iron intake of 6.5 mg/d, assuming 18 percent absorption. We calculated the EAR of absorbed iron (6.5 mg times 18/100) as 1.17 mg/d. This is similar to the WHO/FAO EAR for lactating women (1.1 mg/day).⁸ In the table above, we give EARs for two levels of absorption (five percent and ten percent). Researchers should apply the same levels of absorption as used for NPNL women. This study used coefficient of variation from IOM (30 percent) for lactating women.

Zinc

IZiNCG recently presented revised dietary zinc requirements, including EAR.⁹ It also estimated a CV for the requirement distribution of 12.5 percent, indicating a narrower requirement distribution than implied by the WHO/FAO¹⁰ CV of 25 percent. Hotz¹¹ assessed the internal validity of these new requirements and found that they predicted zinc status. They also yielded similar estimates of prevalence of zinc deficiency as did biochemical indicators, including among pregnant and non-pregnant women. Therefore, we adopted these requirements for the purposes of the WDDP.

As with the WHO/FAO requirements, researchers must choose a requirement depending on an assumption for absorption, which is based on knowledge of diet patterns and likely bioavailability. For mixed or refined vegetarian diets (with a phytate to zinc molar ratio of 4-18) an absorption level of 34 percent is suggested. For high phytate, unrefined cereal-based diets (molar ratio greater than 18), an absorption level of 25 percent is suggested.¹² Note that the level of absorption IZINCG suggests for high phytate diets (25 percent) is considerably higher than the absorption level suggested by the WHO/FAO requirements document (15 percent).

⁸ WHO/FAO 2004, page 265.

⁹ IZiNCG 2004.

¹⁰ 2004.

¹¹ 2007.

¹² IZiNCG 2004.

Nutrient	Mean	SD	Median	EAR ^b	SD ^b	PA (Mean)	PA (Median)	Lambda (Box-Cox transformation) ^c
Energy	2,316	876	2,189					
Protein (All Sources) (% of kcal)	11	4	10					
Protein from animal sources (% of kcal)	3	4	2					
Total carbohydrate (% of kcal)	66	11	68					
Sugars (% of kcal)	13	10	11					
Total fat (% of kcal)	22	10	21					
Saturated fat (% of kcal)								
Thiamin (mg/d)	1.06	0.49	0.98	0.9	0.09	0.44	0.38	0.236
Riboflavin (mg/d)	0.78	0.46	0.67	0.9	0.09	0.13	0.00	0.033
Niacin (mg/d)	9.84	5.72	8.38	11	1.65	0.20	0.06	0.110
Vitamin B6 (mg/d)	1.57	0.86	1.35	1.1	0.11	0.60	0.65	0.106
Folate (µg/d)	255.79	185.31	201.55	320	32	0.12	0.00	0.170
Vitamin B12 (µg/d)	1.00	1.78	0.41	2.0	0.2	0.04	0.00	0.146
Vitamin C (mg/d)	85.65	98.92	53.24	30	3.0	0.68	0.99	0.182
Vitamin A (RE/d)	795.17	978.59	424.64	270	54	0.67	0.97	0.101
Calcium (mg/d)	544.21	432.93	410.61	d	d	0.31	0.25	0.062
Iron (mg/d)	24.72	15.03	21.40	See tables A6-2 &	A6-3	0.73	0.85	0.106
Zinc (mg/d)	9.83	4.61	9.05	30% bioavail: 3.33	0.83	0.93	1.00	0.291
MPA across 11 micronutrients	0.44	0.18	0.42					

Appendix 7. Nutrient Intakes and Probability of Adequacy when Immediate Absorption is Assumed for Iron and Zinc^a

^a Mean and median nutrient intakes are for first observation day; PA are based on estimated usual intake, calculated using repeat observations for a subset of the sample.

^b EAR and SD are presented for the predominant physiological group, i.e., NPNL women (19-65 years). However, the sample also includes pregnant women (7.6 percent), lactating women (20.5 percent) and adolescent girls (2.3 percent). See table A6-1 for sources of data.

^c This documents the transformation parameters selected for each nutrient. The power transformations result in approximately normal distributions.

^d There is no EAR and no SD for calcium; 1000 mg is the AI.

Appendix 8. Comparison of Individual Intakes Assessed by 24-Hour Recall and Weighing Method

	Weighing	g Method	24h-R	ecall		Individ	lual Differ	ences (wei	ighing min	us recall)		T-test *
	mean	SD	mean	SD	mean	% **	SD	min	max	1st quartile	3rd quartile	p-value
Energy (kcal)	2,072.7	829.6	2,123.2	760.4	-50.5	-2.4	828.9	-2,165.0	4,050.3	-478.0	351.7	0.484
Protein (g)	53.9	26.2	56.1	24.0	-2.2	-4.1	26.5	-78.0	97.8	-11.9	7.5	0.339
Total carbohydrate (g)	345.9	150.5	349.7	131.3	-3.7	-1.1	151.5	-443.0	861.6	-79.4	61.5	0.776
Total fat (g)	51.1	30.4	54.2	38.0	-3.1	-6.0	34.2	-148.8	152.9	-15.5	14.1	0.304
Thiamin (mg)	0.9	0.5	1.0	0.5	-0.1	-5.6	0.4	-1.2	1.6	-0.2	0.1	
Riboflavin (mg)	0.6	0.5	0.7	0.4	0.0	-6.9	0.4	-1.1	2.6	-0.2	0.1	
Niacin (mg)	8.7	5.5	9.4	4.5	-0.6	-7.4	5.1	-22.0	26.1	-2.4	0.9	
Vitamin B6 (mg)	1.3	0.8	1.4	0.7	-0.1	-6.7	0.8	-2.6	5.7	0.4	0.2	
Folate (µg)	215.9	164.9	244.0	174.9	-28.1	-13.0	144.4	-592.7	781.0	-64.1	27.5	
Vitamin B12 (µg)	0.9	1.9	1.1	2.2	-0.1	-11.5	2.1	-17.0	12.1	-0.3	0.1	
Vitamin C (mg)	68.5	65.3	86.3	88.0	-17.8	-25.9	72.4	-326.4	156.2	-26.8	9.6	
Vitamin A (RE)	540.0	685.3	779.5	1,000. 9	-239.5	-44.3	928.1	-6,559.9	3,165.8	-320.4	78.0	
Calcium (mg)	421.9	434.3	488.6	408.3	-66.7	-15.8	392.3	-2,092.8	2,061.7	-149.7	73.7	
Iron (mg)	20.4	18.0	22.4	15.0	-2.1	-10.2	14.7	-49.9	90.3	-5.8	1.4	
Zinc (mg)	8.8	4.4	8.8	3.9	0.0	-0.6	3.9	-11.6	20.8	-1.5	1.4	

n = 133 women for whom all food consumptions were directly observed on Day 1

* Paired t-test. A t-test requires that observations are randomly selected in a sample where the variable is normally distributed; this was not the case here, particularly for micronutrients. However, the distributions of energy and macronutrient values were not too far from normality and the investigators decided to perform the test. For micronutrients, distributions were too far from normality and variables should probably be transformed before a statistical comparison can be made.

** Percentage of change: 100 * (mean individual difference / mean weighing method)

	FOOD	NUTRIENT CONTENT										
Code	1000					NOTIX						
of			Energy	Protein		Carbohy-	Sugar	Vitamin	Vitamin	Calcium	Iron	Zinc
Food	Name in French	Water (g)	(kcal)	(g)	Fat (g)	drates (g)	-	A (RE)	C (mg)	(mg)	(mg)	(mg)
					and Grain P							
2	Biscuit, non sucré	3	400.643	13	6	72.9	2.4	0	0	20	1.2	1
11	couscous de sorgho blanc	70.767	110.6667	3.366667	0.8	25.06667	0.233333	2	0	5	1.36667	0.26667
14	Macaroni, bouilli	60	152.4649	4.7	0.9	31	0.2	0	0	8	0.6	0.58
15	Macaroni, séché	9	355.5847	11.9	1.3	73.1	0.5	0	0	25	1	1.4
18	Maïs, blanc, noyau entier, séché	12	366.5635	9.4	4.2	72	5	0	0	16	3.6	1.8
20	Maïs, farine blanche	12	352.9412	8	1	77	3	0	0	6	1.1	1.8
32	Riz, indigène, grain entier, écorcé, rouge	11.3	362.3006	7.4	2.2	77.3	0.7	0	0	38	2.8	2.1
367	Maïs, jaune, écrasé	11	332.7483	7.61	0.73	72.99	0.4	17.368	0	8	5.85	1.48
368	Maïs, blanc, écrasé	9.5	326.9993	8.78	0.22	71.51	0.17	1.002	0	4	0.9	0.43
369	Mil à chandelles, grain entier avec son	12	344.3915	9.5	4.9	64.9	1.6	0.501	0	11	7.5	2.9
370	Mil à chandelles, farin (sans son)	12	313.0674	7.96	3.16	62.49	2.11	0.501	0	13.5	5.8	2.9
372	Riz, blanc, poli	11	345.3489	6.1	0.46	78.2	0.01	0.668	0	8.13	0.37	1.26
374	Sorgho, farine	11	349.2713	10.37	1.7	72.2	0.37	0.167	0	12	5.8	2.14
375	Blé, farine, blanc	11.61	342.2458	10.3	1.5	70.97	0.4	0	0	13	4.54	1.07
1030	Couscous cuit nature	72.57	112	3.79	0.16	23.22	0.1	0	0	8	0.38	0.26
1050	bouillie de petit mil RHD (valeurs de la bouillie de petit mil fermentée)	93.39	26.93443	0.613408	0.346364	5.34088	1.316733	0	0.112863	0.87252	1.40132	0.15048
1204	bouillie de maïs	83.995	59.9508	1.3682	0.126	13.1424	0.072	3.126808	0	1.4403	1.0622	0.27
1219	brisure de mil bouillie	78.58	86.632	2.618	0.7616	17.136	0.952	0.79492	0	6.188	2.618	0
1281	Pain de blé	41.57	220.334	6.7447	0.9675	45.6306	0.2564	0.214094	0	11.243	2.9645	0.7371
3220	pop corn	3.32	387	12.94	4.54	77.9	0.87	14.863	0	7	3.19	3.08
3290	hamburger	46.14	258	13.07	10.07	28.79	5.22	4.843	0.3	74	2.53	2.06
9921	pain du ghana	27.81	289	11.75	1.83	56.44	2.56	0	0.2	44	3.63	0.93
					er Starchy S		F	1	F	1	r	
44	Igname, tubercule, frais	69	118.7664	1.9	0.2	27	0	2.505	6	52	0.8	0.5
46	Manioc, sucré, séché	8.7	352.9888	1.3	0.5	84.8	2.2	14	72	121	1.9	0.7
50	Pomme de terre, crue	78	80.63825	1.7	0.1	18	1	2.004	21	13	1.1	0.3
152	Banane plantain, mûr, cru	65	137.1	1.2	0.3	32	7	65.13	20	8	0.6	0.14
1275	Pommes frites	70.604	144.7	1.5385	8.1905	16.29	0.905	1.81362	19.005	14.355	0.9955	0
1276	Pommes frites douces	62.459	181.8	1.448	8.281	25.34	2.715	5.289725	33.485	32.455	1.81	0
9025	patate pelée bouillie	47.31	80.6	1.7	0.1	18	1	1.7	13.65	11.05	0.935 (continued	0.49

Appendix 9. Food Composition Table

	FOOD					NUTR	IENT CONTI	ENT				
Code of Food	Name in French	Water (g)	Energy (kcal)	Protein (g)	Fat (g)	Carbohy- drates (g)	Sugar	Vitamin A (RE)	Vitamin C (mg)	Calcium (mg)	lron (mg)	Zinc (mg)
					Dry Beans a							
68	Haricot á l'oeil noir, cosse mûre, sèchée	11	336.2	23	1.4	57	7	2.505	2	80	5	3.4
1040	lentilles, préparées	69.64	114.0	9.02	0.38	19.54	1.8	0.835	1.5	19	3.33	1.27
9934	petits pois, conserve	81.7	69.0	4.42	0.35	12.58	4.16	53.44	9.6	20	0.95	0.71
		-			uts and See		_			-		
53	Cajou	2	602.4	15.3	46.4	32.5	5.01	0	0	45	6	5.6
55	Arachide grillée, salée, écorcée	7	570.6	23	45	20	3.8	0	1	49	3.8	3.3
56	Arachide, fraiche, écorcée	22.3	545.6	13.5	48.5	15.7	2.4	0.2505	0	30	3.9	2.1
57	Arachide, séchée, entier, écorcé	7	570.6	23	45	20	3.8	0	1	49	3.8	3.3
60	Datou (kenaf / kando), graine, fermentée	10.5	346.5	21.4	20.3	20	0.043373	36.37952	3.253012	320	4.09032	0.58433
78	Pate d'arachide	7.2	583.9	25	47.2	16.5	3.8	0	0	61	6	3.3
82	Sésame, graine, entière, séchée	5.8	571.0	17.9	48.4	17.8	0.3	5.01	0	816	8.1	7.75
236	Graine d'Oseille de Guinée(datou)rouge,séchée	7	388.0	16.8	17.8	40.3	0.043373	36.37952	3.253012	373	4.2	0.6
371	Farine d'arachide, avec graisse	4.3	551.3	26.64	46.6	8.11	3.22	0	0	41	6.1	3.99
380	Soumbala; néré, graine, fermentée;	17.2	412.4	30.58	32.25	1.1	0.04	33.6171	3	415.6	69.6	5.05
9936	graines de coton, séchées, poudre	6.3	359.0	40.96	6.2	40.54	0	44	2.4	478	12.66	11.69
9947	pistache	1.99	571.0	21.35	45.97	27.65	7.81	26.219	2.3	110	4.2	2.3
					o Yellow/Ora	ange/Red Ve						
154	Carotte, crue	89	37.7	0.9	0.1	8.2	8.2	1002	8	35	0.7	0.3
193	Piment, seché	10.2	335.1	13.8	14	38.5	1.1	177.02	180	130	7.8	2.5
265	Epices	8.46	305.8	6.09	8.69	50.52	1.1	4161	76	661	7	1.01
279	Tomate concentré	72	96.5	4.5	0.2	18.9	12.6	210.42	4	27	3.5	0.7
381	Courge, vapeur	86.9	16.8	0.75	0.09	3.2	3.2	640.779	6.5	27	0.5	0.7
394	Tomates, séché, poudre	3	291.7	12.91	0.44	58.18	0	862	116.7	166	4.56	1.71
						Leafy Vegeta						
164	Epinard, cru	92	21.9	2.6	0.6	1.5	0.4	551.1	54	130	4.5	1.1
200	Salade, cru	94	22.8	1.2	0.2	4	3.7	325.65	10	26	0.7	0.3
207	Feuille d'amarante, crue	84	48.7	4.6	0.2	7	0	384.1	50	410	8.9	0.5
211	Feuille d'haricot, sechée	10	275.0	28	1.8	36	7.8	601.2	461.25	1500	35	4.5
214	Feuille d'oignon, séchée	4.6	272.3	13.8	4.9	42.8	0.2	172.01	18	2070	43	9.2
216	Feuille de baobab, crue	77	70.7	3.8	0.3	13	0	519	52	400	1.1	0.4
223	Feuille de jute, crue	80.4	63.0	4.5	0.3	10.4	0	1070.47	80	360	7.2	0.4
227	Feuilles, vertes foncé, crue	80	61.3	4.5	0.3	10	0	551.1	80	360	7.2	0.4
228	Feuilles, medium vert, crue	92	25.2	1.8	0.2	4	0	225.45	41	76	1.8	0.4
											(continued	۱ ۱

Code Food Name in French Water (g) Energy (kcal) Protein (g) Fet (g) frates (g) Sugar (g) Vitamin (g) Vitamin (g) Calclum (mg) Ino. Zinc (mg) 239 Feuille laurer, séchée 5.4 301.5 7.6 8.4 48.6 0.4 619.57 0 830 43 3.7 77 Feuille de fasobab, séchée 7.3 139.1 16.59 4.07 8.9 4.3 974.278 1.76 8.4 48.6 0.4 619.57 0 830 4.3 3.7 378 Feuille d'agnon, cruce 91 2.68 1.87 0.35 4 0.16 10.857.41 4.1 0.165 1.7 4.1 0.16 10.857.41 1.57 4.1 0.16 10.857.41 1.57 4.1 0.16 10.857.41 1.57 4.1 0.16 10.857.41 1.5 10.3 2.73.428 1742.268 2.568.7 3.14.15 0.9 10.4 1.4 1 6.5 1.5 10.2		FOOD					NUTR	IENT CONT	ENT				
Food Name in French (tp.)													
Vitamin A-Rich Dark Green Leaty Vegetables (continued) Vitamin A-Rich Dark Green Leaty Vegetables (continued) 377 Feuille durier, schohe 7.3 139.1 16.59 4.07 8.9 4.3 974.278 1.76 8.80 4.2 974.278 1.76 8.20 66.74 1.88 377 Feuille d'abonab, séchée 7.3 139.1 16.59 4.07 8.9 4.3 974.278 1.76 8.20 66.74 1.88 382 Feuille d'abonab, séchée 7.3 186.6 2.272 2.77 17.70 6.33 188.2625 2.2 1.30 5.29 0.48 2151 feuille Strache 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 2651 persin, frais 83 610 1.5 0.3 1.67 1.8 0.0 1.0 1.0 1.1 0.1 0.2 1.1 0.1 0.2 1.1 0.1 0.2 1.0												-	-
239 Feulle Jaurier, séchée 5.4 301.5 7.6 8.4 7.8 6.0 619.57 0 8.30 4.3 3.7 377 Feulle de baobab séchée 7.3 186.6 22.72 2.77 17.00 6.33 1886.265 2.97 1416 58.4 2.82 382 Feulle d'arloxol, crue 91 28.8 1.87 0.35 4 0.16 1147.457 41 55.7 4.1 0.16 383 Feulle d'arloxol, crue 86.2 44.3 3.021 1.657143 0.48571 0 430.0286 273.4286 1148.286 28.6857 3.31429 2150 selle séches	Food	Name in French	(g)						A (RE)	C (mg)	(mg)	(mg)	(mg)
377 Feulle de baobab, sechée 7.3 139.1 16.59 4.07 8.9 4.3 974.278 1.76 2263 66.74 1.88 378 Feulle de fakouboye, sechée 7.3 185.6 22.72 2.77 17.09 6.33 1862.65 2.97 1416 58.4 2.82 382 Feuille drightop, crue 86.2 44.3 4.0625 0.4 6 0 858.714 25 1130 5.29 0.482 2151 feuille fraities 86.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 2651 persili, fraiis 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 9399 poireau, frais 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 9399 poireau, frais 88.8 61.0 1.5 0.3 14.15 3.9 167 12 2.9 2.1 0.12 0.7										-		10	<u> </u>
Feulle de fakouhoye, séchée 7.3 185.6 22.72 2.77 17.09 6.33 1886.265 2.97 141.6 58.4 2.82 822 Feulle d'haricot, crue 91 26.8 187 0.35 4 0.16 1147.457 41 557 4.1 0.16 1151 feulle d'haricot, crue 86.2 44.3 4.0625 0.4 6 0 858.714 25 1130 5.29 0.48 2151 feulles d'osenile séches 306.6 30.65714 1.657143 0 519 33 211 3.1 0.4 2152 oselile (seinles, frais 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 2039 poireau, frais 88.8 37.0 3.7 0.2 7.3 3.6 66.8 10 2.0 1 0.7 115 Avocat, crue 80 120.0 1.4 1 6.5 0.5													
382 Feullie d'apron, crue 91 26.8 1.87 0.35 4 0.16 1147.457 41 557 4.1 0.16 383 Feullie d'aprot, crue 86.2 44.3 4.0625 0.4 6 0 858.71 259 0.48 2151 feullies d'ascille sches 306.6 30.65714 1.657143 60.48571 0 4300.236 273.4286 1748.286 256.857 3.31429 2152 oseille, feullies, fraiche 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 9939 poireau, frais 83 61.0 1.5 0.3 14.15 3.9 167 12 59 2.1 0.12 50 Aubergine, indigéne, cue 89 40.8 1.4 1 6.5 0.5 13 20 1.3 0.2 0.1 150 Aubergine, indigéne, cue 80 12.0 1.4 0.1 4.3													
383 Feulle d'hanci, crue 86.2 44.3 40.625 0.4 6 0 858.714 125 1130 5.29 0.48 2151 feuilles d'oseille, staiche 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 2152 oseille, feuilles, fraiche 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 2651 persal, frais 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 9939 poireau, frais 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 9939 poireau, frais 88.8 61.0 1.5 0.3 14.15 3.9 167 12 59 2.1 0.12 7 4.6 0.4 7.7 7.6 6.6 10 20 13 0.2 0.1 150 Concanter, eru 90 27.6 1													
2151 feullies decilies seches 306.6 30.65714 16677143 60.48571 0 4300.286 273.4286 1748.286 25.6857 3.31429 2152 oseille, fauilles, fraiche 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 9939 poireau, frais 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 9939 poireau, frais 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 9939 poireau, frais 88 61.0 1.5 0.3 14.1 5.9 16.7 12 59 2.1 0.12 150 Aubergine, indigène, crue 89 40.8 1.4 1 4.3 3 66.8 18 19 1.4 0.4 151 Avocat, crue 80 12.0 1.4 0.1 5.2 5.1 11.022 54 47 0.3 0.2 1.4 0.4													
2152 oselle, feuilles, fraiche 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 2651 persil, frais 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 2861 persil, frais 83 61.0 1.5 0.3 14.15 3.9 167 12 59 2.1 0.12 0 poireau, frais 83 61.0 1.5 0.3 14.15 3.9 167 12 59 2.1 0.12 0 Aubergine, indigène, crue 89 40.8 1.4 1 6.5 0.5 13 20 13 0.2 0.1 151 Avocat, crue 80 120.0 1.4 0.1 52 5.1 11.022 54 47 0.3 0.2 0.2 1.1 0.4 0.4 0.2 0.4 0.3 0.17 0.1 0.4							-	-					
2651 persil, frais 88.8 37.0 3.7 0.2 7.3 0 519 33 211 3.1 0.4 9939 poireau, frais 83 61.0 1.5 0.3 14.15 3.9 167 12 59 2.1 0.12 65 Haricot, vert, bouilli 82 52.5 4.4 0.4 7.7 3.6 66.8 10 20 1 0.7 150 Aubergine, indighe, crue 80 120.0 1.4 11 4.3 3 66.8 18 19 1.4 0.4 155 Chou, cru 90 2.7.6 1.4 0.1 5.2 5.1 11.022 54 47 0.3 0.2 159 Concombre, cru 95 16.3 0.8 0.1 3 2.6 0 14 13 0.5 0.25994 170 Gombo, cosae cru 89 38.6 2.1 0.2 7 0.3 31.7 <								-					
9939 poireau, frais 83 61.0 1.5 0.3 14.15 3.9 167 12 59 2.1 0.12 65 Haricot, vert, bouilli 82 52.5 4.4 0.4 7.7 3.6 66.8 10 20 1 0.7 150 Aubergine, indigène, crue 89 40.8 1.4 1 6.5 0.5 13 20 13 0.2 0.1 151 Avocat, crue 80 120.0 1.4 0.1 5.2 5.1 11.022 54 47 0.3 0.2 155 Chou, cru 90 27.6 1.4 0.1 3.2 6 0 14 13 0.5 0.2594 170 Gomob, cosse cru 89 38.6 2.1 0.2 7 0.3 31.73 47 84 1.2 0.4 183 Oignon, échalote, cru 88 40.6 1.2 0.1 8 7.7 121.91								•					- · ·
Vitamin C-Rich Vegetables 65 Haricot, vert, bouilli 82 52.5 4.4 0.4 7.7 3.6 66.8 10 20 1 0.7 150 Aubergine, intigène, crue 89 40.8 1.4 1 6.5 0.5 13 20 13 0.2 0.1 151 Avocat, crue 80 120.0 1.4 11 4.3 3 66.8 18 19 1.4 0.4 155 Chou, cru 90 27.6 1.4 0.1 5.2 5.1 11.022 54 47 0.3 0.2 159 Concombre, cru 89 38.6 2.1 0.2 7 0.3 31.73 47 84 1.2 0.4 183 Oignon, échalote, cru 86 47.5 2 0.8 8 7 11.4 140 29 2.6 0.4 192 Piment, doux, vert, cru 87.4 43.0 1.1 0.1													
65 Haricot, vert, bouilli 82 52.5 4.4 0.4 7.7 3.6 66.8 10 20 1 0.7 150 Aubergine, indigène, crue 89 40.8 1.4 1 6.5 0.5 13 20 13 0.2 0.1 151 Avocat, crue 80 120.0 1.4 11 4.3 3 66.8 18 19 1.4 0.1 155 Chou, cru 90 27.6 1.4 0.1 5.2 5.1 11.022 54 47 0.3 0.2 159 Concombre, cru 95 16.3 0.8 0.1 3 2.6 0 1.4 1.3 0.5 0.25994 170 Gombo, cosse cru 88 40.6 1.2 0.1 8.6 7 0 11 27 0.8 0.2 191 Piment, doux, vert, cru 86 47.5 2 0.8 8 7.7 12.191 140 29 2.0 1 201 Tomates, crues 94 22.0 <td>9939</td> <td>poireau, frais</td> <td>83</td> <td>61.0</td> <td></td> <td></td> <td></td> <td>3.9</td> <td>167</td> <td>12</td> <td>59</td> <td>2.1</td> <td>0.12</td>	9939	poireau, frais	83	61.0				3.9	167	12	59	2.1	0.12
150 Aubergine, indigène, crue 89 40.8 1.4 1 6.5 0.5 13 20 13 0.2 0.1 151 Avocat, crue 80 120.0 1.4 11 4.3 3 66.8 18 19 1.4 0.4 155 Chou, cru 90 27.6 1.4 0.1 5.2 5.1 11.022 54 47 0.3 0.2 159 Concombre, cru 95 16.3 0.8 0.1 3 2.6 0 14 13 0.5 0.25994 170 Gombo, cosse cru 89 38.6 2.1 0.2 7 0.3 31.73 47 84 1.2 0.4 130 Oignon, échalote, cru 88 40.6 1.2 0.1 8.6 7.7 121.91 140 29 2.6 0.4 192 Piment, fort, cru 87.4 43.0 1.1 0.1 9.3 1.1 5.11 40 5 1.2 0.1 201 Tomates, crues 94 22				F				r	T	F	F	r	
151 Avocat, crue 80 120.0 1.4 11 4.3 3 66.8 18 19 1.4 0.4 155 Chou, cru 90 27.6 1.4 0.1 5.2 5.1 11.022 54 47 0.3 0.2 159 Concombre, cru 95 16.3 0.8 0.1 3 2.6 0 14 13 0.5 0.25994 170 Gombo, cosse cru 89 38.6 2.1 0.2 7 0.3 31.73 47 84 1.2 0.4 183 Oignon, échalote, cru 86 47.5 2 0.8 8 7.7 121.91 140 29 2.6 0.4 191 Piment, four, cru 87.4 43.0 1.1 0.1 9.3 1.1 55.11 40 5 1.2 0.1 201 Tomates, crues 94 22.0 1 0.2 4 3 63.46 26 10 0.6 0.1 205 Feuille d'naricot à l'oeil noir, crue 85												•	
155 Chou, cru 90 27.6 1.4 0.1 5.2 5.1 11.022 54 47 0.3 0.2 159 Concombre, cru 95 16.3 0.8 0.1 3 2.6 0 14 13 0.5 0.25994 170 Gombo, cosse cru 89 38.6 2.1 0.2 7 0.3 31.73 47 84 1.2 0.4 183 Oignon, échalote, cru 88 40.6 1.2 0.1 8.6 7 0 11 27 0.8 0.2 191 Piment, doux, vert, cru 86 47.5 2 0.8 8 7.7 121.91 140 29 2.6 0.4 192 Piment, doux, vert, cru 86 47.5 2 0.8 8 7.7 121.91 140 29 2.6 0.4 201 Tomates, crues 94 22.0 1 0.2 4 3 63.46 26 10 0.6 0.1 203 Fleuilles, vertes claire, crue 91						-							
159 Concombre, cru 95 16.3 0.8 0.1 3 2.6 0 14 13 0.5 0.25994 170 Gombo, cosse cru 89 38.6 2.1 0.2 7 0.3 31.73 47 84 1.2 0.4 183 Oignon, échalote, cru 88 40.6 1.2 0.1 8.6 7 0 11 27 0.8 0.2 191 Piment, doux, vert, cru 86 47.5 2 0.8 8 7.7 121.91 140 29 2.6 0.4 192 Piment, doux, vert, cru 87.4 43.0 1.1 0.1 9.3 1.1.1 55.11 40 5 1.2 0.1 201 Tomates, crues 94 22.0 1 0.2 4 3 63.46 26 10 0.6 0.1 209 Feuille d'haricot à l'oeil noir, crue 85 46.0 4.7 0.3 6 1.1 91 14 1760 13.3 2.5 247 Oignon et selaire, crue<													
170 Gombo, cosse cru 89 38.6 2.1 0.2 7 0.3 31.73 47 84 1.2 0.4 183 Oignon, áchalote, cru 88 40.6 1.2 0.1 8.6 7 0 11 27 0.8 0.2 191 Piment, fort, cru 86 47.5 2 0.8 8 7.7 121.91 140 29 2.6 0.4 192 Piment, fort, cru 87.4 43.0 1.1 0.1 9.3 1.1 55.11 40 5 1.2 0.1 201 Tomates, crues 94 22.0 1 0.2 4 3 63.46 26 10 0.6 0.1 204 Feuille d'haricot à l'oeil noir, crue 85 46.0 4.7 0.3 6 1.3 116.9 56 255 5.7 0.4 230 Fleur de kapok, séchée 6.8 295.3 4.9 1.4 65 1.1 91 14 1760 13.3 2.5 241 Menthe frais <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
183 Oignon, échalote, cru 88 40.6 1.2 0.1 8.6 7 0 11 27 0.8 0.2 191 Piment, doux, vert, cru 86 47.5 2 0.8 8 7.7 121.91 140 29 2.6 0.4 192 Piment, fort, cru 87.4 43.0 1.1 0.1 9.3 1.1 55.11 40 5 1.2 0.1 201 Tomates, crues 94 22.0 1 0.2 4 3 63.46 26 10 0.6 0.1 209 Feuille d'haricot à l'oeil noir, crue 85 46.0 4.7 0.3 6 1.3 116.9 56 255 5.7 0.4 230 Fleur de kapok, séchée 6.8 295.3 4.9 1.4 65 1.1 91 14 1760 13.3 2.5 241 Menthe frais 84.9 43.0 3.8 0.7 5.3 5.3 123.58 31 210 9.5 0.9 247 Oignon et feuille									-				
191 Piment, doux, vert, cru 86 47.5 2 0.8 8 7.7 121.91 140 29 2.6 0.4 192 Piment, fort, cru 87.4 43.0 1.1 0.1 9.3 1.1 55.11 40 5 1.2 0.1 201 Tomates, crues 94 22.0 1 0.2 4 3 63.46 26 10 0.6 0.1 209 Feuille d'haricot à l'oeil noir, crue 85 46.0 4.7 0.3 6 1.3 116.9 56 255 5.7 0.4 226 Feuille d'haricot à l'oeil noir, crue 91 28.0 1.7 0.1 5 4.8 12.525 54 47 0.7 0.4 230 Fleur de kapok, séchée 6.8 295.3 4.9 1.4 65 1.1 91 14 1760 13.3 2.5 241 Menthe frais 84.9 43.0 3.8 0.7 5.3 5.3 123.58 31 210 9.5 0.9 247 Oignon et feuill													
192 Piment, fort, cru 87.4 43.0 1.1 0.1 9.3 1.1 55.11 40 5 1.2 0.1 201 Tomates, crues 94 22.0 1 0.2 4 3 63.46 26 10 0.6 0.1 209 Feuille d'hariot à l'oeil noir, crue 85 46.0 4.7 0.3 6 1.3 116.9 56 255 5.7 0.4 226 Feuilles, vertes claire, crue 91 28.0 1.7 0.1 5 4.8 12.52 5.4 47 0.7 0.4 230 Fleur de kapok, séchée 6.8 295.3 4.9 1.4 65 1.1 91 14 1760 13.3 2.5 241 Menthe frais 84.9 43.0 3.8 0.7 5.3 5.3 12.358 31 210 9.5 0.9 247 Oignon ef feuille d'oignon, non mûrs 92.9 21.9 1.3 0.1 3.9 0.4 96 17 90 0.7 0.2 2011								-	-				
201 Tomates, crues 94 22.0 1 0.2 4 3 63.46 26 10 0.6 0.1 209 Feuille d'haricot à l'oeil noir, crue 85 46.0 4.7 0.3 6 1.3 116.9 56 255 5.7 0.4 226 Feuilles, vertes claire, crue 91 28.0 1.7 0.1 5 4.8 12.525 54 47 0.7 0.4 230 Fleur de kapok, séchée 6.8 295.3 4.9 1.4 655 1.1 91 14 1760 13.3 2.5 241 Menthe frais 84.9 43.0 3.8 0.7 5.3 5.3 123.58 31 210 9.5 0.9 247 Oignon et feuille d'oignon, non mûrs 92.9 21.9 1.3 0.1 3.9 0.4 96 17 90 0.7 0.2 651 haricot vert cru 35.0 1.9 0.3 7.													
209Feuille d'haricot á l'oeil noir, crue8546.04.70.361.3116.9562555.70.4226Feuilles, vertes claire, crue9128.01.70.154.812.52554470.70.4230Fleur de kapok, séchée6.8295.34.91.4651.19114176013.32.5241Menthe frais84.943.03.80.75.35.3123.58312109.50.9247Oignon et feuille d'oignon, non mûrs92.921.91.30.13.90.49617900.70.2651haricot vert cru35.01.90.37.90.36710461.30.42011tomate bien mûre crue94.518.00.880.23.922.6374.98312.7100.270.172012tomate verte/peu mûre9323.01.20.25.1457.78223.4130.510.079010chou préparé92.5720.51.04020.07433.86363.78937.7643528.085434.9210.22290.148614Aubergine, crue86.746.21.90.19.31.33.342160.90.4149Aubergine, crue9031.710.26.462.839914<													
226Feuilles, vertes claire, crue9128.01.70.154.812.52554470.70.4230Fleur de kapok, séchée6.8295.34.91.4651.19114176013.32.5241Menthe frais84.943.03.80.75.35.3123.58312109.50.9247Oignon et feuille d'oignon, non mûrs92.921.91.30.13.90.49617900.70.2651haricot vert cru35.01.90.37.90.36710461.30.42011tomate bien mûre crue94.518.00.880.23.922.6374.98312.7100.270.172012tomate verte/peu mûre9323.01.20.25.1457.78223.4130.510.079010chou préparé92.5720.51.04020.07433.86363.78937.7643528.085434.9210.22290.1486Hetterse, crue38Betterave, crue86.746.21.90.19.31.33.342160.90.4149Aubergine, crue9031.710.26.462.8399141.30.2225Feuille de tamarin, séchée3.9309.7143.95400 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
230Fleur de kapok, séchée6.8295.34.91.4651.19114176013.32.5241Menthe frais84.943.03.80.75.35.3123.58312109.50.9247Oignon et feuille d'oignon, non mûrs92.921.91.30.13.90.49617900.70.2651haricot vert cru35.01.90.37.90.36710461.30.42011tomate bien mûre crue94.518.00.880.23.922.6374.98312.7100.270.172012tomate verte/peu mûre9323.01.20.25.1457.78223.4130.510.079010chou préparé92.5720.51.04020.07433.86363.78937.7643528.085434.9210.22290.148638Betterave, crue86.746.21.90.19.31.33.342160.90.4149Aubergine, crue9031.710.26.462.8399141.30.2225Feuille de tamarin, séchée3.9309.7143.954002.5932.6912.7379Gombo, cosse, séché, poudre6.7163.814.541.6222.412.348.5970.44697.75													
241 Menthe frais 84.9 43.0 3.8 0.7 5.3 5.3 123.58 31 210 9.5 0.9 247 Oignon et feuille d'oignon, non mûrs 92.9 21.9 1.3 0.1 3.9 0.4 96 17 90 0.7 0.2 651 haricot vert cru 35.0 1.9 0.3 7.9 0.3 67 10 46 1.3 0.4 2011 tomate bien mûre crue 94.5 18.0 0.88 0.2 3.92 2.63 74.983 12.7 10 0.27 0.17 2012 tomate verte/peu mûre 93 23.0 1.2 0.2 5.1 4 57.782 23.4 13 0.51 0.07 9010 chou préparé 92.57 20.5 1.0402 0.0743 3.8636 3.7893 7.76435 28.0854 34.921 0.2229 0.1486 All Oter Vegetables 38 Betterave, crue						0.1						-	
247Oignon et feuille d'oignon, non mûrs92.921.91.30.13.90.49617900.70.2651haricot vert cru35.01.90.37.90.36710461.30.42011tomate bien mûre crue94.518.00.880.23.922.6374.98312.7100.270.172012tomate verte/peu mûre9323.01.20.25.1457.78223.4130.510.079010chou préparé92.5720.51.04020.07433.86363.78937.7643528.085434.9210.22290.1486All Other VegetablesSign colspan="4">All Other Vegetables38Betterave, crue86.746.21.90.19.31.33.342160.90.4149Aubergine, crue9031.710.26.462.8399141.30.2225Feuille de tamarin, séchée3.9309.7143.954002.59326912.7379Gombo, cosse, séché, poudre6.7163.814.541.6222.412.348.5970.44697.7578.184.75393Céleri, cru94.612.20.750.141.951.836.6874000.40.13		Fleur de kapok, séchée											
651haricot vert cru35.01.90.37.90.36710461.30.42011tomate bien mûre crue94.518.00.880.23.922.6374.98312.7100.270.172012tomate verte/peu mûre9323.01.20.25.1457.78223.4130.510.079010chou préparé92.5720.51.04020.07433.86363.78937.7643528.085434.9210.22290.1486All Other Vegetables38Betterave, crue86.746.21.90.19.31.33.342160.90.4149Aubergine, crue9031.710.26.462.8399141.30.2225Feuille de tamarin, séchée3.9309.7143.954002.59326912.7379Gombo, cosse, séché, poudre6.7163.814.541.6222.412.348.5970.44697.7578.184.75393Céleri, cru94.612.20.750.141.951.836.687400.40.13		Menthe frais	84.9			0.7		5.3	123.58	31	210		
2011tomate bien mûre crue94.518.00.880.23.922.6374.98312.7100.270.172012tomate verte/peu mûre9323.01.20.25.1457.78223.4130.510.079010chou préparé92.5720.51.04020.07433.86363.78937.7643528.085434.9210.22290.1486HI Uter Vegetables38Betterave, crue86.746.21.90.19.31.33.342160.90.4149Aubergine, crue9031.710.26.462.8399141.30.2225Feuille de tamarin, séchée3.9309.7143.954002.59326912.7379Gombo, cosse, séché, poudre6.7163.814.541.6222.412.348.5970.44697.7578.184.75393Céleri, cru94.612.20.750.141.951.836.687400.40.13		Oignon et feuille d'oignon, non mûrs	92.9										
2012tomate verte/peu mûre9323.01.20.25.1457.78223.4130.510.079010chou préparé92.5720.51.04020.07433.86363.78937.7643528.085434.9210.22290.1486All Other Vegetables38Betterave, crue86.746.21.90.19.31.33.342160.90.4149Aubergine, crue9031.710.26.462.8399141.30.2225Feuille de tamarin, séchée3.9309.7143.954002.59326912.7379Gombo, cosse, séché, poudre6.7163.814.541.6222.412.348.5970.44697.7578.184.75393Céleri, cru94.612.20.750.141.951.836.687400.40.13	651	haricot vert cru											
9010 chou préparé 92.57 20.5 1.0402 0.0743 3.8636 3.7893 7.76435 28.0854 34.921 0.2229 0.1486 All Detterave, crue 86.7 46.2 1.9 0.1 9.3 1.3 3.34 2 16 0.9 0.4 149 Aubergine, crue 90 31.7 1 0.2 6.4 6 2.839 9 14 1.3 0.2 225 Feuille de tamarin, séchée 3.9 309.7 14 3.9 54 0 0 2.59 326 91 2.7 379 Gombo, cosse, séché, poudre 6.7 163.8 14.54 1.62 22.4 12.3 48.597 0.44 697.75 78.18 4.75 393 Céleri, cru 94.6 12.2 0.75 0.14 1.95 1.83 6.68 7 40 0.4 0.13		tomate bien mûre crue						2.63					
All Other Vegetables 38 Betterave, crue 86.7 46.2 1.9 0.1 9.3 1.3 3.34 2 16 0.9 0.4 149 Aubergine, crue 90 31.7 1 0.2 6.4 6 2.839 9 14 1.3 0.2 225 Feuille de tamarin, séchée 3.9 309.7 14 3.9 54 0 0 2.59 326 91 2.7 379 Gombo, cosse, séché, poudre 6.7 163.8 14.54 1.62 22.4 12.3 48.597 0.44 697.75 78.18 4.75 393 Céleri, cru 94.6 12.2 0.75 0.14 1.95 1.83 6.68 7 40 0.4 0.13		tomate verte/peu mûre						-					
38 Betterave, crue 86.7 46.2 1.9 0.1 9.3 1.3 3.34 2 16 0.9 0.4 149 Aubergine, crue 90 31.7 1 0.2 6.4 6 2.839 9 14 1.3 0.2 225 Feuille de tamarin, séchée 3.9 309.7 14 3.9 54 0 0 2.59 326 91 2.7 379 Gombo, cosse, séché, poudre 6.7 163.8 14.54 1.62 22.4 12.3 48.597 0.44 697.75 78.18 4.75 393 Céleri, cru 94.6 12.2 0.75 0.14 1.95 1.83 6.68 7 40 0.4 0.13	9010	chou préparé	92.57	20.5	1.0402	0.0743	3.8636	3.7893	7.76435	28.0854	34.921	0.2229	0.1486
149Aubergine, crue9031.710.26.462.8399141.30.2225Feuille de tamarin, séchée3.9309.7143.954002.59326912.7379Gombo, cosse, séché, poudre6.7163.814.541.6222.412.348.5970.44697.7578.184.75393Céleri, cru94.612.20.750.141.951.836.687400.40.13													
225 Feuille de tamarin, séchée 3.9 309.7 14 3.9 54 0 0 2.59 326 91 2.7 379 Gombo, cosse, séché, poudre 6.7 163.8 14.54 1.62 22.4 12.3 48.597 0.44 697.75 78.18 4.75 393 Céleri, cru 94.6 12.2 0.75 0.14 1.95 1.83 6.68 7 40 0.4 0.13		Betterave, crue			1.9			1.3					
379 Gombo, cosse, séché, poudre 6.7 163.8 14.54 1.62 22.4 12.3 48.597 0.44 697.75 78.18 4.75 393 Céleri, cru 94.6 12.2 0.75 0.14 1.95 1.83 6.68 7 40 0.4 0.13		Aubergine, crue			-			6	2.839	-		-	
393 Céleri, cru 94.6 12.2 0.75 0.14 1.95 1.83 6.68 7 40 0.4 0.13		Feuille de tamarin, séchée	3.9				54	-	-	2.59	326	91	2.7
										0.44			
1591 courgette 16.0 0.7 0.2 3.4 0.2 23 5 22 0.3 0.3	393		94.6		0.75					7			
	1591	courgette		16.0	0.7	0.2	3.4	0.2	23	5	22	0.3	0.3

	FOOD					NUTRI	ENT CONT	ENT				
Code			_									
of Food	Name in French	Water (g)	Energy (kcal)	Protein (g)	Fat (g)	Carbohy- drates (g)	Sugar	Vitamin A (RE)	Vitamin C (mg)	Calcium	lron (mg)	Zinc
FOOU	Name in French	(g)	(KCal)		nin A-Rich F		(g)			(mg)	(ing)	(mg)
180	Mangue, mûre, crue, épluchée	83	64.9	0.6	0.2	15	13	400.8	42	11.6	1.2	0.1
243	Néré, arbre à farine, fruit	13.2	290.6	3.4	0.4	67.5	3.6	405.81	242	124	3.6	0.6
					Palm Oil and							
252	Huile de palme rouge	1	872.4	0	99	0	0	2004	0	6	0	0
9006	graine de palme	72.5	203.0	0.6	20.2	6.7	2.1	1002	4	3	0.2	0.1
9901	extraction par l'eau de "farine" de palme	90.833	67.7	0.2	6.733333	2.233333	0.7	334	1.333333	1	0.06667	0.03333
				Vitan	nin C-Rich F	ruits						
75	Noix de cola, crue	62.9	143.2	2.2	0.4	32.3	10.6	4.175	54	58	2	0.6
77	Pain de singe, graine, séchée	7.8	469.3	30	29.6	21.5	0.6	0	210	263	13.9	0.3
81	Prune noire, pulpe, cru	70.6	112.0	0.7	0.4	26.1	6	10	9	34	2.7	0.1
148	Ananas, frais	87	53.1	0.4	0.1	12.5	12	11.69	34	16	0.4	0.1
153	Banane, mûre, crue	77	87.9	1.5	0.1	20	17	15.03	9	9	0.05	0.2
157	Citron, lime, cru	90	41.9	0.6	0.8	8	5	1.336	45	19	0.7	0.1
167	Finsan	69.2	208.6	5	20	3	3	92.685	26	40	2.7	0.1
175	Jus d'orange, en conserve	88.8	39.8	0.7	0.15	8.8	8.8	7.515	39	10	0.24	0.05
176	Jus d'orange, frais, nonsucré	89.3	38.2	0.7	0.2	8.3	8.3	11.69	44	17	0.4	0.04
177	Jus de citron, en conserve	92.5	14.4	0.4	0.3	2.5	0.3	1.503	20	11	0.13	0.06
178	Jus de citron, frais	90.8	17.1	0.4	0.1	3.6	3.6	2.004	37	7	0.14	0.05
179	Mandarine, orange, cru	88	46.4	0.6	0.08	10	9	38.41	46	28	0.1	0.1
181	Mangue, non mûre, crue, épluchée	84	59.6	0.5	0.1	14	6	10.02	86	7	1.4	0.1
194	Pomme d'cajou, crue	86.2	51.0	0.9	0.5	10.6	1	82.498	218	8	1.2	0.2
199	Saba, fruit, cru	21.67	264.3	1.03	1.31	61.4	6	0	48	51	1	0.1
203	Baobab pulpe, pain de singe	16	299.0	2.2	0.8	69.9	0.6	11.69	270	284	7.4	0.3
231	Fruit d'Oseille de Guinée (dâh), rouge, cru	84.5	50.3	1.9	0.1	10.3	0	50.1	14	172	2.9	0.4
234	Fruit de tamarin, séché	21	236.1	5	0.6	52	7	7.515	9	165	2.2	0.3
9930	jus d'ananas	86.37	53.0	0.36	0.12	12.87	9.98	0.501	10	13	0.31	0.11
9935	melon, blanc	91.85	28.0	1.11	0.1	6.58	5.69	0	21.8	11	0.34	0.07
					II Other Frui				-	_		
74	Noix de coco, noyau mûr, frais	43	386.6	3.6	39	7	7	2.171	2	21	2.5	1.1828
163	Dattes, séchées	17.3	271.7	2.7	0.6	63.1	63.1	5.01	0	69	2.7	0.4
195	Pomme, crue	86	42.6	0.3	0.1	10	9.9	1.837	1	5	0.1	0
235	Fruit de tamarin, très sec	5	305.4	8.2	2.4	62	0	0	3	244	3	2.3
399	Dattes, crues	20.53	282.0	2.45	0.39	75.03	63.35	1.002	0.4	39	1.02	0.29
9929	olive verte	75.28	145.0	1.03	15.32	3.84	0.54	38.577	0	52	0.49	0.04

	FOOD					NUTR	IENT CONT	ENT				
Code			_	_								
of Food	Name in French	Water (g)	Energy (kcal)	Protein	Fat (g)	Carbohy- drates (g)	Sugar (g)	Vitamin A (RE)	Vitamin C (mg)	Calcium (mg)	lron (mg)	Zinc
FOOU	Name in French	(9)	(KCal)	(g)	Eggs	urates (g)	(9)		C (IIIg)	(ing)	(ing)	(mg)
137	Oeuf de poule, cru	75	140.7	12	10	1	0	152	0	45	2	1.4
3170	Oeuf dur	74.62	142.9	12.1824	10.152	1.0152	0	203.04	0	45.684	2.0304	1.42128
		•		M	ilk and Yogu	ırt						
125	Lait concentré sucré	32.2	297.0	8.1	5.4	53.5	53.5	62	1	262	0	0.9
132	Lait entier frais, vache,	85	77.9	3.8	4.8	5	5	40.36	1	145	0	0.4
1288	Café avec sucre et lait	84.326	68.0	1.752	1.7425	11.2531	10.7188	0	1.86	59.577	0.6772	0.2842
1446	Café au lait concentré	77.229	99.3	2.7217	1.7992	17.8977	17.8155	0	0.333	87.528	0.0088	0.0008
1481	Lait, reconstitué de poudre, Nido	86.024	68.4	2.7756	3.024	7.5392	7.5392	0	3.24	100.475	1.08	0.486
3190	yaourt, fan (sucré)	87.9	61.0	3.47	3.25	4.66	4.66	27.835	0.5	121	0.05	0.59
9004	lait en poudre	2.47	496.0	26.32	26.71	38.42	38.42	260.181	8.6	912	0.47	3.34
	_	_			Cheese							
9026	fromage vache qui rit (fromage fondu)	53.75	349.0	7.55	34.87	2.66	0.2	373.863	0	80	1.2	0.54
				uck, Turkey		uinea Hen, G	ame Birds					
139	Poulet, cru	72	138.2	20	6.5	0	0	85.02	0	10	1.1	1.1
1212	poulet télévisé, cuit	60.11	197.0	28.49286	9.260179	0	0	90.82098	0	13.53411	1.4104	1.56711
	_	_		ef, Pork, Vea	al, Lamb, Go	oat, Game M	eat					
134	Boeuf estomac, cru	72	108.0	15.8	5	0	0	0	3	8	4	0.7
136	Lapin, cru	73	124.3	22	4	0	0	10	0	13	1.8	1.7
140	Viande de boeuf, très maigre, crue	74.6	116.9	20.6	3.8	0	0	0	0	22	4.6	2.3
141	Viande de boeuf, séchée, salée, crue	29.4	237.5	55.4	1.5	0	0	0	0	49	4.9	5
142	Viande de boeuf, un peu grasse, crue	63	231.5	18	18	0	0	0	0	11	3.6	2.7
143	Viande de chèvre, un peu grasse, crue	68	169.8	18	11	0	0	0	0	11	2.3	4
144	Viande de mouton, seché, salé, crue	31	446.7	29.8	37	0	0	17	0	16	2.4	5
145	Viande de mouton, un peu grasse, crue	61	253.9	17	21	0	0	10	0	10	2	2.3
146	Viande de porc, un peu grasse, crue	46	401.0	12	40	0	0	0	0	11	1.8	1.6
1201	boyaux préparés	81.65	108.0	15.8	5	0	0	0	2.4	8	3.8	0.7
1202	porc au four	55.04	401.0	12	40	0	0	0	0.3	8.25	1.44	1.6
3152	boeuf, brochette	58.64	258.8	20.12108	20.12108	0	0	20.81973	0	12.29622	3.82301	0
		•		•				•			continued	\

	FOOD					NUTR	IENT CONT	ENT				
Code of Food	Name in French	Water (g)	Energy (kcal)	Protein (g)	Fat (g)	Carbohy- drates (g)	Sugar (g)	Vitamin A (RE)	Vitamin C (mg)	Calcium (mg)	lron (mg)	Zinc (mg)
			Beef, Por			me Meat (co						
9012	viande de mouton préparée	54	299.4	20.05128	24.76923	0	0	9.435897	0	11.79487	2.35897	2.71282
9015	viande de boeuf préparée	58.64	258.8	20.12108	20.12108	0	0	22.20771	0	12.29622	4.02422	0
9017	viande de chèvre préparée	68.21	169.8	18	11	0	0	0	0	11	2.3	4
9023	boyaux de boeuf	81.65	108.0	15.8	5	0	0	0	2.4	8	3.8	0.7
9903	saucisson de boeuf	52.3	311.0	16.37	25.39	3.05	0	0	0	18	1.4	2.1
9913	peau de boeuf, cuite	0	889.0	0	98.59	0	0	0	0	0	0	0
9937	corned beef	52.5	308.0	14.4	26.2	2.9	0	0	0	11	2.32	2.53
9942	merguez	49.78	339.0	19.43	28.36	0	0	12	0.7	13	1.36	2.08
					Organ Meat	:						
389	Mouton foie, cru	71.3	133.5	20.3	5	1.8	0	7390	4	7	7.37	4.66
1203	foie braisé	56.2	209.8	30.8167	7.013969	5.745486	5.745486	13533.42	20.89267	10.44634	11.4622	6.46181
				Small Fish E	Eaten Whole	with Bones	;					
88	Capitaine, perche de Nil, séché	12.2	401.5	70	13.4	0	0	0	0	170	1.4	1.7
119	Silure; poisson-chat, fumé et séché	11.5	384.7	77.6	8	0	0	0	0	41	1.4	1.7
120	Silure; poisson-chat, séché, entier	20.6	308.5	62.5	6.3	0	0	0	0	1370	3.6	1
			Large Who	le Fish/Drie	d Fish/Shell	fish and Oth	er Seafood					
84	Carpe d'Afrique, bouillie *	79.2	80.8	16.9375	1.39	0	0	2.8	1.3	190	0.83	1.28
85	Carpe d'Afrique, crue*	81.3	68.2	15.6875	0.53	0	0	7	2	42	1.3	1.5
86	Capitaine de mer, cru*	78.3	82.8	19.8	0.3	0	0	7	1	177	0.2	0.3
105	Poisson, bouilli, maigre*	77.113	94.6	18.1562	2.3938	0	0	10	0.65	127.7	1.235	0.9
108	Poisson, fumé	5.8	378.1	76.0417	7.9667	0	0	35	0	1019	16.7267	3.6567
117	Sardines à huile, conserve#	53	283.1	24	21.1	0	0	115.672	0	191	2.8	2
121	Carpe, bouillie *	78.6	86.1	17.625	1.67	0	0	3.3	0.65	81.6	1.68	0.76
1051	poisson frais synchar	88.1	53.0	11.4	0.5	0	0	7	1	7	0.3	0.3
1277	Poisson frit	48.754	369.6	10.3831	37.185	0	0	0	0	4.255	0	0
9932	thon, conserve	74.51	116.0	25.51	0.82	0	0	17	0	11	1.53	0.77
9933	oeufs de poisson frits	58.63	204.0	28.62	8.23	1.92	0.12	91	16.4	28	0.77	1.28
9949	gambas, cuite	52.86	242.0	21.39	12.28	11.47	0	64	1.5	67	1.26	1.38

Code Food Name in French Water (g) Energy (kcal) Protein (g) Protein (g) Protein (g) Energy (g) Carbohy- trates (g) Sugar (g) Vitamin (kR) Calcium (kR) Iron (mg) Zinc (mg) 147 All 64 135.2 7.9 0.6 24.2 1.6 0 17 19 1.9 1. 249 Beure de kanté 0.8 80.3 0 99.9 0		FOOD					NUTR	IENT CONT	ENT					
Food Name in French (g) (kcal) (g) Fat (g) (g) A (RE) C (mg) (mg) (mg) 147 All 64 135.2 7.9 0.6 24.2 1.6 0 17 19 1.9 1.9 168 Gingembre, racine, frais 80.9 0.70 2.3 0.09 12.3 1.538133 6.68 6 2.0 2.8 0.30763 249 Beurre de karité 0 880.3 0 99.9 0 <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th>				_				•						
Other Other 147 Ail Second Second 168 Gingembre, racine, frais 80.9 67.0 2.3 1.538133 6.66 20 2.0 100 0 <th colsp<="" th=""><th>-</th><th>Nome in French</th><th></th><th></th><th></th><th>Eat (a)</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th></th>	<th>-</th> <th>Nome in French</th> <th></th> <th></th> <th></th> <th>Eat (a)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th>	-	Nome in French				Eat (a)						-	
147 Ail 64 135.2 7.9 0.6 24.2 1.6 0 17 19 1.9 1 168 Gingember, aciale, frais 80.9 67.0 2.3 0.9 12.3 1.538133 6.88 6 20 2.6 0.30763 249 Beure de kanté 0 881.2 0 100 0	FOOU	Name in French	(g)	(KCal)	(g)		drates (g)	(g)	A (RE)	C (mg)	(mg)	(mg)	(ing)	
168 Gingembre, racine, frais 80.9 67.0 2.3 0.9 12.3 15.38133 6.68 6 2.0 2.6 0.30763 249 Beure de karifé 0 880.3 0 99.9 0 <td>147</td> <td>Ail</td> <td>64</td> <td>135.2</td> <td>79</td> <td></td> <td>24.2</td> <td>1.6</td> <td>0</td> <td>17</td> <td>19</td> <td>19</td> <td>1</td>	147	Ail	64	135.2	79		24.2	1.6	0	17	19	19	1	
249 Beurre de karté 0 881.2 0 100 0 0 0 0 0 0 0 0 250 Huile drachide (b) 0 881.2 0 100 0			-						-				0.30763	
Hule drachide (b) 0 881.2 0 100 0														
1 Hulle de coton (b) 0 881.2 0 100 0 0 0 0 0 0.03 0.01 254 Hulle de soja 0 880.3 0 99.9 0 0 0 0 0.1 0 0.1 0 255 Miel 19.2 323.1 0.4 0 79.4 79.4 0 0 0 11 0.6 0.2 256 Biere Europeenne, 4.4 vol% 91 38.7 0.4 0 3.2 0.4 0 0 0 100 0 0 1 0 0 258 Biere Europeenne, 4.4 vol% 91 38.7 0.4 0 92.7 78 0 0 89 1.1 0.1 261 Chewing gum 3 376.9 0.4 0.92.7 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0					-		-	-	-	0	-	0	-	
254 Hulie de soja 0 880.3 0 99.9 0 0 0 0 0.1 0.2 255 Miei 19.2 323.1 0.4 0 79.4 79.4 0 0 11 0.6 0.2 257 Sucre 0 404.9 0 0 100 100 0 0 1 0 0 0 258 Biohon 3 376.9 0.4 0 92.7 81 0 0 1152 7.4 0.11 262 Cube maggi/Jumbo 3.3 170.5 17.3 4 16.1 15 15 0 60 2.23 0.21 264 Eau 100 0.0 0					0		0	0	0	0	0	0.03	0.01	
255 Miel 19.2 323.1 0.4 0 79.4 79.4 0 0 11 0.6 0.2 257 Sucre 0 404.9 0 0 100 100 0 0 1 0 0 258 Biere Europeenne, 4.4 vol% 91 38.7 0.4 0 3.2 0.4 0 0 3 0 0 258 Biere Europeenne, 4.4 vol% 91 38.7 0.4 0 92.7 81 0 0 1152 7.4 0.1 261 Chewing gum 3.3 170.5 17.3 4 16.1 15 0 <			0		0		0	0	0	0	0			
257 Sucre 0 404.9 0 0 100 100 0 1 0 0 258 Bière Europeenne, 4.4 vol% 91 38.7 0.4 0 3.2 0.4 0 0 0 3 0 0 259 Borbon 3 393.5 3 0 94.2 7.8 0 0 8.9 1.1 0.1 261 Chew magg/Jumbo 3.3 170.5 17.3 4 16.1 15 0 60 2.2 0.21 264 Eau 100 0.0 0					0.4		79.4	79.4		0		0.6	0.2	
Eißer Europeenne, 4.4 vol% 91 387 0.4 0 32 0.4 0 0 3 0 0 259 Bonbon 3 393.5 3 0 94.2 78 0 0 89 1.1 0.1 261 Chewing gum 3 376.9 0.4 0 92.7 81 0 0 1152 7.4 0.1 262 Cube maggi/Jumbo 3.3 170.5 17.3 4 161 15 15 0 60 2.23 0.21 264 Eau 100 0.0 0		Sucre				0	100	100	0	0	1	0	0	
259 Bonbon 3 393.5 3 0 94.2 78 0 0 89 1.1 0.1 261 Chewing gum 3 376.9 0.4 0 92.7 81 0 0 1152 7.4 0.1 262 Cube magg/Jumbo 3.3 170.5 17.3 4 16.1 15 15 0 600 2.23 0.21 264 Eau 100 0.0 0	258	Bière Europeenne, 4.4 vol%	91	38.7	0.4	0	3.2	0.4	0	0	3	0	0	
261 Chewing gum 3 376.9 0.4 0 92.7 81 0 0 1152 7.4 0.1 262 Cube maggi/Jumbo 3.3 170.5 17.3 4 16.1 15 15 0 60 2.23 0.21 264 Eau 100 0.0 0	259		3	393.5	3	0	94.2	78	0	0	89	1.1	0.1	
264 Eau 100 0.0 0	261	Chewing gum			0.4	0		81	0	0	1152	7.4	0.1	
267 Levure, sec 5 278.4 35.6 1.5 29.9 0 0 0 80 20 8 268 Mayonnaise, 80% graisse 16 719.9 1.2 80 2.5 0 43.503 0 10 0.5 0.1 269 Nescafé, sec 3.1 220.2 12.2 0.5 41.1 0 0 0 141 4.4 0.35 270 Poixre noir 10.5 228.3 10.9 3.3 38.3 38.3 19.038 21 437 28.9 1.4 272 Potassium, solide (de mais) 8.6 2.1 0.513 0 <	262	Cube maggi/Jumbo	3.3	170.5	17.3	4	16.1	15	15	0	60	2.23	0.21	
268 Mayonnaise, 80% graisse 16 719.9 1.2 80 2.5 0 43.503 0 10 0.5 0.1 269 Nescafe, sec 3.1 220.2 12.2 0.5 41.1 0 0 0 141 4.4 0.35 270 Poivre noir 10.5 228.3 10.9 3.3 38.3 38.3 19.038 21 437 28.9 1.4 272 Potassium, liquide 99.9 0.0 <	264	Eau	100	0.0	0	0	0	0	0	0	0	0	0	
269 Nescafé, sec 3.1 220.2 12.2 0.5 41.1 0 0 0 141 4.4 0.35 270 Poivre noir 10.5 228.3 10.9 3.3 38.3 19.038 21 437 28.9 1.4 272 Potassium, liquide 99.9 0.0 0 0 0 0 0 0 28 0 0.004 273 Potassium, solide (de maïs) 8.6 2.1 0.513 0 </td <td>267</td> <td>Levure, sec</td> <td>5</td> <td>278.4</td> <td>35.6</td> <td>1.5</td> <td>29.9</td> <td>0</td> <td>0</td> <td>0</td> <td>80</td> <td>20</td> <td>8</td>	267	Levure, sec	5	278.4	35.6	1.5	29.9	0	0	0	80	20	8	
270 Poivre noir 10.5 228.3 10.9 3.3 38.3 38.3 19.038 21 437 28.9 1.4 272 Potassium, liquide 99.9 0.0 0 <td< td=""><td>268</td><td>Mayonnaise, 80% graisse</td><td>16</td><td>719.9</td><td>1.2</td><td>80</td><td>2.5</td><td>0</td><td>43.503</td><td>0</td><td>10</td><td>0.5</td><td>0.1</td></td<>	268	Mayonnaise, 80% graisse	16	719.9	1.2	80	2.5	0	43.503	0	10	0.5	0.1	
272 Potassium, liquide 99.9 0.0 0 <td>269</td> <td>Nescafé, sec</td> <td>3.1</td> <td>220.2</td> <td>12.2</td> <td>0.5</td> <td>41.1</td> <td>0</td> <td>0</td> <td></td> <td>141</td> <td>4.4</td> <td>0.35</td>	269	Nescafé, sec	3.1	220.2	12.2	0.5	41.1	0	0		141	4.4	0.35	
273 Potassium, solide (de maïs) 8.6 2.1 0.513 0 0 0 0 0 38 0 0.26 277 Sucrerie, cola, fanta 90 40.5 0 0 10 10 0		Poivre noir			10.9	3.3	38.3	38.3	19.038	21		28.9		
277 Sucrerie, cola, fanta 90 40.5 0 0 10 10 0 0 0 0 0 278 Thé noir, lipton sans sucre 100 1.2 0.3 0 <td></td> <td>Potassium, liquide</td> <td>99.9</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td></td>		Potassium, liquide	99.9			0	0	0	0	0		0		
278 Thé noir, lipton sans sucre 100 1.2 0.3 0					0.513	0		0	0	0	38	0	0.26	
280 sauce Maggi 0 350.2 86.5 0 0 0 30 0 60 2.23 0.21 281 Vinaigre 93.8 23.9 0 0 5.9 0 0 0 6 6 0 396 Anis graine 9.54 354.8 17.6 15.9 35.42 0 15.531 21 646 36.96 5.3 398 Moutarde 6 110.3 6.4 0.3 20.2 14.5 0 0 95 1.8 1 401 Sel sans iode 1 2.0 0 0 0.4 0 0 0 30 0 0 402 Café sans sucre et sans lait 99 2.0 0.1 0 0.4 0 0 0 1 0.04 0 0 0 1.71 0.0444 0.0044 1290 Oseille de Guiné bouilli + sucre 85.985 55.1 0.247 0.013 </td <td></td> <td>Sucrerie, cola, fanta</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>10</td> <td>10</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>		Sucrerie, cola, fanta			0	0	10	10	0	0	0	0	0	
281 Vinaigre 93.8 23.9 0 0 5.9 0 0 6 6 0 396 Anis graine 9.54 354.8 17.6 15.9 35.42 0 15.531 21 646 36.96 5.3 398 Moutarde 6 110.3 6.4 0.3 20.2 14.5 0 0 95 1.8 1 401 Sel sans iode 1 2.0 0 0 0.4 0 0 0 33 0 0 402 Café sans sucre et sans lait 99 2.0 0.1 0 0.4 0 0 0 1.71 0.0484 0.0044 1287 Café avec sucre 83.034 66.8 0.1342 0.0055 16.3521 15.9 0 0 1.71 0.0484 0.0044 1290 Oseille de Guiné bouilli + sucre 85.985 55.1 0.247 0.013 13.339 12 6.513 1.82			100				-	0				-		
396 Anis graine 9.54 354.8 17.6 15.9 35.42 0 15.531 21 646 36.96 5.3 398 Moutarde 6 110.3 6.4 0.3 20.2 14.5 0 0 95 1.8 1 401 Sel sans iode 1 2.0 0 0 0.5 0 0 0 10 0.3 0.1 402 Café sans sucre et sans lait 99 2.0 0.1 0 0.4 0 0 0 33 0 0 1287 Café avec sucre 83.034 66.8 0.1342 0.0055 16.3521 15.9 0 0 1.71 0.0484 0.0044 1290 Oseille de Guiné bouilli + sucre 85.985 55.1 0.247 0.013 13.339 12 6.513 1.82 22.48 0.377 0 1291 Gingembre + sucre 82.635 69.7 0.1403 0.0549 16.9503			-		86.5	0		0	30	0	60	2.23	0.21	
398 Moutarde 6 110.3 6.4 0.3 20.2 14.5 0 0 95 1.8 1 401 Sel sans iode 1 2.0 0 0 0.5 0 0 0 0.3 0.1 402 Café sans sucre et sans lait 99 2.0 0.1 0 0.4 0 0 0 3 0 0 1287 Café avec sucre 83.034 66.8 0.1342 0.0055 16.3521 15.9 0 0 1.71 0.0484 0.0044 1290 Oseille de Guiné bouilli + sucre 85.985 55.1 0.247 0.013 13.339 12 6.513 1.82 22.48 0.377 0 1291 Gingembre + sucre 82.635 69.7 0.1403 0.0549 16.9503 16.2 0.40748 0.366 1.382 0.1586 0 1294 Jus de tamarin + sucre 68.569 122.0 0.286 29.7726 28.6					-	-		0	-	-		-	-	
401 Sel sans iode 1 2.0 0 0 0.5 0 0 0 10 0.3 0.1 402 Café sans sucre et sans lait 99 2.0 0.1 0 0.4 0 0 0 3 0 0 1287 Café avec sucre 83.034 66.8 0.1342 0.0055 16.3521 15.9 0 0 1.71 0.0484 0.0044 1290 Oseille de Guiné bouilli + sucre 85.985 55.1 0.247 0.013 13.339 12 6.513 1.82 22.48 0.377 0 1291 Gingembre + sucre 82.635 69.7 0.1403 0.0549 16.9503 16.2 0.40748 0.366 1.382 0.1586 0 1294 Jus de tamarin + sucre 68.569 122.0 0.286 0.0286 29.7726 28.6 0 1.144 8.866 0 0 0 1295 Thé vert avec sucre 82.4 71.4 0.024 0 17.6 17.6 0 0 0.176 0 0<			9.54					-	15.531	21			5.3	
402Café sans sucre et sans lait992.00.100.40003001287Café avec sucre83.03466.80.13420.005516.352115.9001.710.04840.00441290Oseille de Guiné bouilli + sucre85.98555.10.2470.01313.339126.5131.8222.480.37701291Gingembre + sucre82.63569.70.14030.054916.950316.20.407480.3661.3820.158601294Jus de tamarin + sucre68.569122.00.2860.028629.772628.601.1448.866001295Thé vert avec sucre82.471.40.024017.617.6000.176001297Boisson du pain de singe, d'eau + sucre66.653126.00.48350.175830.247814.88512.56922859.340762.56641.626403070biscuits emballés26.7365.06.216.548.53.4800493.30.48								14.5	-					
1287Café avec sucre83.03466.80.13420.005516.352115.9001.710.04840.00441290Oseille de Guiné bouilli + sucre85.98555.10.2470.01313.339126.5131.8222.480.37701291Gingembre + sucre82.63569.70.14030.054916.950316.20.407480.3661.3820.158601294Jus de tamarin + sucre68.569122.00.2860.028629.772628.601.1448.866001295Thé vert avec sucre82.471.40.024017.617.6000.176001297Boisson du pain de singe, d'eau + sucre66.653126.00.48350.175830.247814.88512.56922859.340762.56641.626403070biscuits emballés26.7365.06.216.548.53.4800493.30.48										-				
1290 Oseille de Guiné bouilli + sucre 85.985 55.1 0.247 0.013 13.339 12 6.513 1.82 22.48 0.377 0 1291 Gingembre + sucre 82.635 69.7 0.1403 0.0549 16.9503 16.2 0.40748 0.366 1.382 0.1586 0 1294 Jus de tamarin + sucre 68.569 122.0 0.286 0.0286 29.7726 28.6 0 1.144 8.866 0 0 1295 Thé vert avec sucre 82.4 71.4 0.024 0 17.6 17.6 0 0 0.176 0 0 0.176 0						•		•	-	•		•	v	
1291 Gingembre + sucre 82.635 69.7 0.1403 0.0549 16.9503 16.2 0.40748 0.366 1.382 0.1586 0 1294 Jus de tamarin + sucre 68.569 122.0 0.286 0.0286 29.7726 28.6 0 1.144 8.866 0 0 1295 Thé vert avec sucre 82.4 71.4 0.024 0 17.6 17.6 0 0 0.176 0 0 1297 Boisson du pain de singe, d'eau + sucre 66.653 126.0 0.4835 0.1758 30.2478 14.8851 2.569228 59.3407 62.5664 1.6264 0 3070 biscuits emballés 26.7 365.0 6.2 16.5 48.5 3.48 0 0 49 3.3 0.483									-					
1294 Jus de tamarin + sucre 68.569 122.0 0.286 0.0286 29.7726 28.6 0 1.144 8.866 0 0 1295 Thé vert avec sucre 82.4 71.4 0.024 0 17.6 17.6 0 0 0.176 0 0 1297 Boisson du pain de singe, d'eau + sucre 66.653 126.0 0.4835 0.1758 30.2478 14.8851 2.569228 59.3407 62.5664 1.6264 0 3070 biscuits emballés 26.7 365.0 6.2 16.5 48.5 3.48 0 0 49 3.3 0.483													-	
1295 Thé vert avec sucre 82.4 71.4 0.024 0 17.6 17.6 0 0.176 0 0 1297 Boisson du pain de singe, d'eau + sucre 66.653 126.0 0.4835 0.1758 30.2478 14.8851 2.569228 59.3407 62.5664 1.6264 0 3070 biscuits emballés 26.7 365.0 6.2 16.5 48.5 3.48 0 0 49 3.3 0.483													-	
1297 Boisson du pain de singe, d'eau + sucre 66.653 126.0 0.4835 0.1758 30.2478 14.8851 2.569228 59.3407 62.5664 1.6264 0 3070 biscuits emballés 26.7 365.0 6.2 16.5 48.5 3.48 0 0 49 3.3 0.48												÷		
1297 sucre 66.655 126.0 0.4855 0.1756 50.2476 14.6851 2.569226 59.3407 62.5664 1.6264 0 3070 biscuits emballés 26.7 365.0 6.2 16.5 48.5 3.48 0 0 49 3.3 0.48	1295		82.4	71.4	0.024	0	17.6	17.6	0	0	0.176	0	0	
		sucre							2.569228				-	
3231 caramel avec lait et sucre 0.55 560.0 1.07 32.75 64.72 63.47 324.688 0.2 34 0.03 0.12	3070	biscuits emballés	26.7											
	3231	caramel avec lait et sucre	0.55	560.0	1.07	32.75	64.72	63.47	324.688	0.2	34	0.03	0.12	

	FOOD					NUTR	IENT CONT	ENT				
Code of		Water	Energy	Protein		Carbohy-	Sugar	Vitamin	Vitamin	Calcium	Iron	Zinc
Food	Name in French	(g)	(kcal)	(g)	Fat (g)	drates (g)	(g)	A (RE)	C (mg)	(mg)	(mg)	(mg)
	_			Otl	ner (continu	ed)		-				
4060	jus de fruit industriel, indéfini	86.2	54.0	0.2	0	13.41	9.36	1.169	15	2	0.11	0.02
4080	dolo	96	41.0	0.3	0	3.7	0	0	0	5	0	0
4100	vin, sangria	86.58	83.0	0.07	0	2.72	0.79	0	0	8	0.37	0.13
9908	beurre indéfini/margarine	18.5	714.0	0.5	80.3	0.5	0	869.87	0.1	17	0	0
9911	graisse de mouton	0	902.0	0	100	0	0	0	0	0	0	0
9912	beurre de lait	17.94	717.0	0.85	81.11	0.06	0.06	697.386	0	24	0.02	0.09
9923	levure chimique	5	53.0	0	0	27.7	0	0	0	5876	11.02	0.01
9931	chocolat en poudre sucré	0.9	405.0	3.3	3.1	90.9	83.88	0	0.7	37	3.14	1.55
9938	Aloe Vera	88.9	40.0	0.9	0.2	9.3	2.3	2.5	8.5	24	0.46	0.18
9941	huile d'olive	0	884.0	0	100	0	0	0	0	1	0.56	0
9951	huile de palme	0	862.0	0	100	0	0	0	0	0	0	0

	FOOD				F NUTRIENT VALUE				LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
				Grai	ns and Grain Products				
2	Biscuit, non sucré	Mali	2	Biscuit, non sucré	NA	10	14.0	57.2	25.7
11	couscous de sorgho blanc	World- food	1013	SORGHUM, COUSCOUS, RAW	YIELD factors	1	170.0	170.0	170.0
14	Macaroni, bouilli	Mali	14	Macaroni, bouilli	sugar and zinc = TACAM ref 15 ("macaronis secs") + adjustment on dry matter	68	1.0	1086.2	162.9
15	Macaroni, séché	Mali	15	Macaroni, séché	NA	79	0.5	314.5	30.4
18	Maïs, blanc, noyau entier, séché	Mali	18	Maïs, blanc, noyau entier, séché	folate and zinc = FCT Sénégal Worldfood : ref 1080 (MAIZE, WHOLE KERNEL, DRIED) + no adjustment on dry matter (not given in Worldfood)	2	0.5	69.2	34.8
20	Maïs, farine blanche	Mali	20	Maïs, farine blanche	folate and zinc = FCT Sénégal Worldfood : ref 1082 (MAIZE, FLOUR) + no adjustment on dry matter (not given in Worldfood)	713	0.3	640.1	117.1
32	Riz, indigène, grain entier, écorcé, rouge	Mali	32	Riz, indigène, grain entier, écorcé, rouge	sugar, riboflavin, vit B6, folate, vit C and zinc = FCT Sénégal Worldfood : ref 1064 (RICE, RED NATIVE) + no adjustment on dry matter (not given in Worldfood)	1	101.1	101.1	101.1
367	Maïs, jaune, écrasé	Mali	367	Maïs, jaune, écrasé	vit B6 & folate = FCT Sénégal Worldfood : ref 1082 (MAIZE, FLOUR) + no adjustment on dry matter (not given in Worldfood)	102	7.5	429.4	151.1
368	Maïs, blanc, écrasé	Mali	368	Maïs, blanc, écrasé	vit B6 & folate = FCT Sénégal Worldfood : ref 1080 (MAIZE, WHOLE KERNEL, DRIED) + no adjustment on dry matter (not given in Worldfood)	5	20.6	677.8	200.4
369	Mil à chandelles, grain entier avec son	Mali	369	Mil à chandelles, grain entier avec son	vit B6 & folate = FCT Sénégal Worldfood : ref 1005 (MILLET, WHOLE GRAIN) + no adjustment on dry matter (not given in Worldfood)	25	4.2	236.6	71.6
370	Mil à chandelles, farin (sans son)	Mali	370	Mil à chandelles, farin (sans son)	vit B6 & folate = FCT Sénégal Worldfood : ref 1008 (MILLET, FLOUR) + no adjustment on dry matter (not given in Worldfood)	301	1.0	529.0	78.6

Appendix 10. References for Nutrient Values in Food Composition Table

	FOOD			REFERENCE O	F NUTRIENT VALUE		OOD NUT		LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
				Grains and	d Grain Products (continued)				
370	Mil à chandelles, farin (sans son)	Mali	370	Mil à chandelles, farin (sans son)	vit B6 & folate = FCT Sénégal Worldfood : ref 1008 (MILLET, FLOUR) + no adjustment on dry matter (not given in Worldfood)	301	1.0	529.0	78.6
372	Riz, blanc, poli	Mali	372	Riz, blanc, poli	vit B6 & folate = FCT Sénégal Worldfood : ref 1060 et 1061(RICE, MILLED AND POLISHED and RICE, BROKEN INDUSTRIAL) + no adjustment on dry matter (not given in Worldfood)	1136	0.3	785.4	113.2
374	Sorgho, farine	Mali	374	Sorgho, farine	vit B6 & folate = FCT Sénégal Worldfood : ref 1002 (SORGHUM, FLOUR, RED) + no adjustment on dry matter (not given in Worldfood)	35	17.4	350.8	135.9
375	Blé, farine, blanc	Mali	375	Blé, farine, blanc	folate = FCT Sénégal Worldfood : ref 1100 (WHEAT, FLOUR, 72% EXTRACTION) + no adjustment on dry matter (not given in Worldfood). Vitamin A = adjustment of beta- caroten according to Doets	92	1.2	464.1	71.5
1030	Couscous cuit nature	USDA	20029	"'COUSCOUS, COOKED"	NA	6	66.4	631.0	322.6
1050	bouillie de petit mil RHD (valeurs de la bouillie de petit mil fermentée)	local infor- mation	NA	bouille de petit mil	Nutrient values are from local studies by IRD- UR106 on fermented millet gruels consumed in Ouagadougou except sugar, vit A, thiamin, riboflavin, vit B6, vit B12, niacin, folate, vit C, zinc that are from FCT Mali : vmean values for references 1203, 1403, 2008 ("bouillie de mil avec gruau")+adjustment on known dry matter of gruels in Ouagadougou	241	29.8	1717.6	513.0
1204	bouillie de maïs	Mali	1204	bouillie de maïs	Kayes' gruel chosen rather than Bamako's according to value of water content	17	14.5	765.1	346.0
1219	brisure de mil bouillie	Mali	1219	brisure de mil bouillie	NA	8	4.0	250.8	113.2
1281	Pain de blé	Mali	1281	Pain de blé	NA	328	8.3	207.9	61.8
3220	pop corn	USDA	19034	"'POPCORN,AIR- POPPED"	NA	2	20.0	22.0	21.0

	FOOD			REFERENCE C	OF NUTRIENT VALUE		OOD NUT		LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
		_			d Grain Products (continued)				
3290	hamburger	USDA	21108	"FAST FOODS, HAMBURGER; SINGLE, REG PATTY; W/ CONDMNT"	NA	1	207.0	207.0	207.0
9921	pain du ghana	USDA	18029	BREAD, FRENCH OR VIENNA (INCLUDES SOURDOUGH)	NA	7	25.0	90.0	48.2
					Other Starchy Staples			1	
44	Igname, tubercule, frais	Mali	44	Igname, tubercule, frais	vit B6, folate and zinc = FCT Sénégal Worldfood : ref 1229 (YAM) + no adjustment on dry matter (not given in Worldfood)	32	39.2	1594.0	506.1
46	Manioc, sucré, séché	Mali	46	Manioc, sucré, séché	sugar, vit A, thiamin, riboflavin, vit B6, niacin, folate, vit C, iron, zinc = FCT Sénégal Worldfood : ref 1202 (CASSAVA, ROOT, DRIED MEAL). Vit A recalculated from retinol and beta-carotene. No adjustment on dry matter (not given in Worldfood)	62	9.5	301.7	111.7
50	Pomme de terre, crue	Mali	50	Pomme de terre, crue	zinc = FCT Sénégal Worldfood : ref 1251 (POTATO, FRESH-EP) + no adjustment on dry matter (not given in Worldfood)	23	3.9	657.2	194.2
152	Banane plantain, mûr, cru	Mali	152	Banane plantain, mûr, cru	NA	25	12.9	430.0	177.3
1275	Pommes frites	Mali	1275	Pommes frites	NA	8	36.0	323.0	198.2
1276	Pommes frites douces	Mali	1276	Pommes frites douces	NA	7	100.0	214.3	157.1
9025	patate pelée bouillie	Mixed	x	x	TACAM ref 50 "Pomme de terre, crue" + adjustment of water content on USDA 20 ref 11364 "POTATOES,BKD,SKN,WO/SALT" + retention factor ref 501 "LEGUMES,CKD 15/20MIN,BOILED,DRAINED"	2	11.8	57.4	34.6
44	Igname, tubercule, frais	Mali	44	Igname, tubercule, frais	vit B6, folate and zinc = FCT Sénégal Worldfood : ref 1229 (YAM) + no adjustment on dry matter (not given in Worldfood)	32	39.2	1594.0	506.1

	FOOD			REFERENCE C	OF NUTRIENT VALUE	USE OF F	OOD NUT		LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
				Cook	ed Dry Beans and Seeds				
68	Haricot á l'oeil noir, cosse mûre, sèchée	Mali	68	Haricot á l'oeil noir, cosse mûre, sèchée	Zinc = FCT Sénégal Worldfood : ref 1331 (COWPEA, WHOLE DRIED) + no adjustment on dry matter (not given in Worldfood)	239	2.7	455.2	88.2
1040	lentilles, préparées	USDA	16370	-L'ENTILS,MATURE SEEDS,CKD,BLD,W /SALT"	NA	5	29.3	128.3	86.3
9934	petits pois, conserve	USDA	11813	PEAS,GRN,CND,N O SALT,DRND SOL	NA	1	23.4	23.4	23.4
		I	1		Nuts and Seeds		I		
53	Cajou	Mali	53	Cajou	sugar, vit A, vit B6, folate, zinc = USDA20 code 12085 (CASHEW NUTS, DRY RSTD, WO/SALT) + no adjustment on dry matter because same moisture (2 in TACAM, 1.7 in USDA)	1	88.4	88.4	88.4
55	Arachide grillée, salée, écorcée	Mali	55	Arachide grillée, salée, écorcée	sugar, vit B6 and zinc = FCT Sénégal Worldfood : ref 1304 (PEANUT, ROASTED, SHELLED) + no adjustment on dry matter (not given in Worldfood). Vitamin A = adjustment of beta-caroten according to Doets	14	3.6	50.0	20.8
56	Arachide, fraiche, écorcée	Mali	56	Arachide, fraiche, écorcée	sugar, vit B6 and zinc = FCT Sénégal Worldfood : ref 1300 (PEANUT, FRESH-EP) + no adjustment on dry matter (not given in Worldfood)	133	0.5	83.8	19.4
57	Arachide, séchée, entier, écorcé	Mali	57	Arachide, séchée, entier, écorcé	sugar and zinc = FCT Sénégal Worldfood : ref 1302 (PEANUT, DRIED, SHELLED) + no adjustment on dry matter (not given in Worldfood). Vitamin A = adjustment of beta- carotene according to Doets	15	6.0	270.2	42.8
60	Datou (kenaf / kando), graine, fermentée	Mali	60	Datou (kenaf / kando), graine, fermentée	for iron, zinc, niacin, riboflavin =TACAM: values for ref 236 (Datou séché) adjusted for dry matter. For sugar, vit A, vit B6, folate, vit C, =TACAM: values for ref 380 (Soumbala; néré, graine, fermentée;)	28	0.3	53.6	8.2

	FOOD			REFERENCE C	OF NUTRIENT VALUE	USE OF F	OOD NUT		LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
				Nuts	and Seeds (continued)				
78	Pate d'arachide	Mali	78	Pate d'arachide	sugar, vit A, vit B6, folate, vit C, zinc = FCT Sénégal Worldfood : ref 1305 (PEANUT, PATE) + no adjustment on dry matter (not given in Worldfood)	522	0.5	200.5	25.4
82	Sésame, graine, entière, séchée	Mali	82	Sésame, graine, entière, séchée	sugar, vit B6, folate, vit C, zinc = USDA20 code 12023 (SESAME SEEDS, WHOLE, DRIED). No adjustment on dry matter because same moisture (5,8 for food and 4,69 for USDA food)	4	48.8	60.0	55.7
236	Graine d'Oseille de Guinée(datou)rouge, séchée	Mali	236	Graine d'Oseille de Guinée(datou)rouge, séchée	sugar, vit A, vit B6, folate, vit C= TACAM : value for ref 380 (Soumbala; néré, graine, fermentée;). Adjusted to dry matter of reference 60 (Datou (kenaf / kando), graine, fermentée)	2	2.3	2.4	2.3
371	Farine d'arachide, avec graisse	Mali	371	Farine d'arachide, avec graisse	vit B6, vit C & folate = FCT Sénégal Worldfood : ref 1305 (PEANUT, PATE) + no adjustment on dry matter (not given in Worldfood). Vitamin A = adjustment of beta- carotene according to Doets	87	0.7	40.3	10.7
380	Soumbala; néré, graine, fermentée;	Mali	380	Soumbala; néré, graine, fermentée;	vit B6, vit C & folate = FCT Sénégal Worldfood : ref 1340 (AFRICAN LOCUST BEAN, FERMENTED, DRIED) + no adjustment on dry matter (not given in Worldfood)	708	0.0	51.6	2.5
9936	graines de coton, séchées, poudre	USDA	12007	COTTONSEED FLR, PART DEFATTED (GLANDLESS)	for sugar, TACAM ref 64 (graine de soja séché)	2	11.8	21.0	16.4
9947	pistache	USDA	12152	PISTACHIO NUTS, DRY RSTD, WO/SALT	NA	4	1.5	9.8	6.6

	FOOD			REFERENCE C	OF NUTRIENT VALUE	USE OF F	OOD NUT		LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
				Vitamin A-Rich	Deep Yellow/Orange/Red Vegetables				
154	Carotte, crue	Mali	154	Carotte, crue	NA	100	0.4	76.5	11.7
193	Piment, seché	Mali	193	Piment, seché	sugar, vit B6, folate, fer, zinc = FCT Sénégal Worldfood : ref 1701(PEPPER, RED OR HOT, DRIED) + no adjustment on dry matter (not given in Worldfood)	29	0.1	9.7	1.3
265	Epices	Mali	265	Epices	sugar, vit A, vit C = FCT Sénégal Worldfood : ref 1703 (PEPPER, SPICE, DRIED). Vit A recalculated from retinol and beta-carotene. No adjustment on dry matter (not given in Worldfood)	26	0.2	2.1	0.9
279	Tomate concentré	Mali	279	Tomate concentré	NA	1092	0.0	31.8	3.7
381	Courge, vapeur	Mali	381	Courge, vapeur	vit B6, vit C & folate = FCT Sénégal Worldfood : ref 1544 (SQUASH, DEEP YELLOW, FRUIT) + retention factors + no adjustment on dry matter (not given in Worldfood)	1	2.7	2.7	2.7
394	Tomates, séché, poudre	Mali	394	Tomates, séché, poudre	sugar =FCT Sénégal Worldfood : ref 1763 (TOMATO, POWDERED) + no adjustment on dry matter (not given in Worldfood)	104	0.0	0.8	0.2
					ch Dark Green Leafy Vegetables				
164	Epinard, cru	Mali	164	Epinard, cru	NA	25	2.2	53.7	19.2
200	Salade, cru	Mali	200	Salade, cru	NA	105	3.6	333.5	61.2
207	Feuille d'amarante, crue	Mali	207	Feuille d'amarante, crue	vit B6, zinc = FCT Sénégal Worldfood : ref 1507 (LEAF, AMARANTH, FRESH-EP) + no adjustment on dry matter (not given in Worldfood)	108	0.6	282.7	77.7
211	Feuille d'haricot, sechée	Mali	211	Feuille d'haricot, sechée	thiamin, riboflavin, vit B6, niacin, folate, vit C, zinc=TACAM: values for reference 228(feuille medium vert cru)+ yield factors	3	1.5	2.1	1.8
214	Feuille d'oignon, séchée	Mali	214	Feuille d'oignon, séchée	sugar, thiamin, riboflavin, vit B6, niacin, folate, vit C, zinc=FCT Sénégal Worldfood : ref 1685 (GREEN ONION LEAF, DRIED) + no adjustment on dry matter (not given in Worldfood)	7	0.1	1.4	0.7

	FOOD			REFERENCE C	OF NUTRIENT VALUE				LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
		- ungin		Vitamin A-Rich Da	rk Green Leafy Vegetables (continued)				
216	Feuille de baobab, crue	Mali	216	Feuille de baobab, crue	sugar, vit A, thiamin, riboflavin, vit B6, niacin, folate, zinc=FCT Sénégal Worldfood : ref 1520 (LEAF, BAOBAB, FRESH-EP). Vit A recalculated from retinol and beta-carotene. No adjustment on dry matter (not given in Worldfood)	2	24.9	33.6	29.2
223	Feuille de jute, crue	Mali	223	Feuille de jute, crue	sugar, vit B6, folate, zinc=FCT Sénégal Worldfood : ref 1547 (LEAF, JUTE, FRESH- EP) + no adjustment on dry matter (not given in Worldfood)	30	2.3	174.6	40.3
227	Feuilles, vertes foncé, crue	Mali	227	Feuilles, vertes foncé, crue	sugar, vitB6, zinc = FCT Sénégal Worldfood : mean of all references of leaves (LEAF) + no adjustment on dry matter (not given in Worldfood)	29	1.1	65.4	15.2
228	Feuilles, medium vert, crue	Mali	228	Feuilles, medium vert, crue	sugar, zinc = FCT Sénégal Worldfood : mean of all references of leaves (LEAF) + no adjustment on dry matter (not given in Worldfood)	19	2.2	104.0	26.0
239	Feuille laurier, séchée	Mali	239	Feuille laurier, séchée	sugar = FCT Sénégal Worldfood : ref 1644 (LAUREL, SWEET BAY, LEAF, DRIED) + no adjustment on dry matter (not given in Worldfood)	293	0.0	0.6	0.1
377	Feuille de baobab, séchée	Mali	377	Feuille de baobab, séchée	vit B6 & folate = FCT Sénégal Worldfood : ref 1521 (BAOBAB LEAF, POWDERED) + no adjustment on dry matter (not given in Worldfood)	66	0.8	76.1	16.8
378	Feuille de fakouhoye, séchée	Mali	378	Feuille de fakouhoye, séchée	vit B6 & folate = TACAM : value for reference 228 (feuille medium vert cru)+ yield factors	148	0.9	192.3	13.1
382	Feuille d'oignon, crue	Mali	382	Feuille d'oignon, crue	vit B6, vit C & folate = TACAM : value for reference 228 (feuilles medium vert) (no yield factor because same moisture : 92 for the other food and 91 for the food)	656	0.1	98.6	9.6

	FOOD			REFERENCE C	OF NUTRIENT VALUE				LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
			-	Vitamin A-Rich Da	k Green Leafy Vegetables (continued)				
383	Feuille d'haricot, crue	Mali	383	Feuille d'haricot, crue	sugar, vit B6, vit C & folate = FCT Sénégal Worldfood : ref 1611 (LEAF, GREEN SNAP BEAN, FRESH-EP) + no adjustment on dry matter (not given in Worldfood)	31	7.5	153.9	42.7
2151	feuilles d'oseille sèches	World- food	1681	SORREL, FOR TEA	NA	25	1.1	115.7	39.6
2152	oseille, feuilles,fraiche	World- food	1682	LEAF, SORREL, FRESH-EP	NA	215	1.3	185.4	41.6
2651	persil, frais	World- food	1710	PARSLEY, FRESH	NA	736	0.0	21.5	1.5
9939	poireau, frais	USDA	11246	LEEKS, (BULB & LOWER LEAF- PORTION), RAW	NA	2	0.6	0.6	0.6
			•		min C-Rich Vegetables			•	
65	Haricot, vert, bouilli	Mali	65	Haricot, vert, bouilli	NA	18	0.6	82.0	8.9
150	Aubergine, indigène, crue	Mali	150	Aubergine, indigène, crue	sugar, vit A, thiamin, riboflavin, vit B6, niacin, folate, vit C, iron, zinc =FCT Sénégal Worldfood : ref 1760 (bitter tomato). Vit A recalculated from retinol and beta-carotene. No adjustment on dry matter (not given in Worldfood)	270	0.1	95.0	10.5
151	Avocat, crue	Mali	151	Avocat, crue	NA	65	4.7	300.0	81.9
155	Chou, cru	Mali	155	Chou, cru	NA	669	0.1	372.8	35.3
159	Concombre, cru	Mali	159	Concombre, cru	zinc =USDA20 code 11206 (CUCUMBER, PEELED, RAW)+ yield factors (adjustment to dry matter => value in USDA*(100-moisture in TACAM)/(100-moisture in USDA20) + no adjustment on dry matter (not given in Worldfood)	70	3.5	360.1	56.1
170	Gombo, cosse cru	Mali	170	Gombo, cosse cru	sugar, zinc = FCT Sénégal Worldfood : ref 1600 (OKRA, FRESH) + no adjustment on dry matter (not given in Worldfood)	194	0.0	376.5	11.9

	FOOD			REFERENCE C	OF NUTRIENT VALUE				LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
				Vitamin C	-Rich Vegetables (continued)				
183	Oignon, échalote, cru	Mali	183	Oignon, échalote, cru	zinc = FCT Sénégal Worldfood : ref 1684 (ONION, FRESH) + no adjustment on dry matter (not given in Worldfood)	1484	0.1	214.0	15.0
191	Piment, doux, vert, cru	Mali	191	Piment, doux, vert, cru	zinc = FCT Sénégal Worldfood : ref 1708 (PEPPER, SWEET, FRESH) + no adjustment on dry matter (not given in Worldfood)	597	0.0	52.4	2.7
192	Piment, fort, cru	Mali	192	Piment, fort, cru	sugar, vit B6, folate, zinc = FCT Sénégal Worldfood : ref 1700 (PEPPER, RED OR HOT, FRESH) + no adjustment on dry matter (not given in Worldfood)	173	0.0	13.1	1.3
201	Tomates, crues	Mali	201	Tomates, crues	NA	535	0.0	134.4	14.0
209	Feuille d'haricot á l'oeil noir, crue	Mali	209	Feuille d'haricot á l'oeil noir, crue	zinc = FCT Sénégal Worldfood : ref 1672 (LEAF, COWPEA, FRESH-EP) + no adjustment on dry matter (not given in Worldfood)	144	0.1	23.6	3.4
226	Feuilles, vertes claire, crue	Mali	226	Feuilles, vertes claire, crue	zinc = FCT Sénégal Worldfood : mean of all references of leaves (LEAF) + no adjustment on dry matter (not given in Worldfood)	3	0.6	4.2	2.4
230	Fleur de kapok, séchée	Mali	230	Fleur de kapok, séchée	sugar, vit A, thiamin, riboflavin, vit B6, niacin, folate, vit C=FCT Sénégal Worldfood : ref 1601 (OKRA, DRIED); Vit A recalculated from retinol and beta-carotene. No adjustment on dry matter (not given in Worldfood)	100	0.6	42.9	8.2
241	Menthe frais	Mali	241	Menthe frais	NA	153	0.1	28.2	4.0
247	Oignon et feuille d'oignon, non mûrs	Mali	247	Oignon et feuille d'oignon, non mûrs	sugar, vit A, thiamin, riboflavin, vit B6, niacin, folate, fer, zinc=FCT Sénégal Worldfood : ref 1686 (ONION, GREEN). Vit A recalculated from retinol and beta-carotene. No adjustment on dry matter (not given in Worldfood)	160	0.2	25.1	4.6
651	haricot vert cru	World- food	1610	BEAN, GREEN SNAP, FRESH	NA	15	5.2	123.0	29.2
2011	tomate bien mûre crue	USDA	11529	-TOMATOES, RED, RIPE, RAW, YEAR RND AVERAGE"	NA	1153	0.7	485.0	26.3

	FOOD			REFERENCE C	OF NUTRIENT VALUE				LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
			-	Vitamin C	-Rich Vegetables (continued)	,			
2012	tomate verte/peu mûre	USDA	11527	- T OMATOES, GREEN, RAW"	NA	52	3.0	117.2	44.2
9010	chou préparé	Mixed	x	x	TACAM ref 155 -Ghou, cru" + adjustment of water content on USDA 20 ref 11110 -GABBAGE, CKD, BLD, DRND, WO/SALT" + retention factor ref 3006 -VEG, GREENS, BOILED, WATER USED"	23	10.0	708.0	141.1
					All Other Vegatables				
38	Betterave, crue	Mali	38	Betterave, crue	sugar = FCT Sénégal Worldfood : ref 1526 (BEET, ROOT, FRESH-AP) + no adjustment on dry matter (not given in Worldfood)	1	7.1	7.1	7.1
149	Aubergine, crue	Mali	149	Aubergine, crue	zinc = FCT Sénégal Worldfood : ref 1501 (EGGPLANT, FRESH-EP) + no adjustment on dry matter (not given in Worldfood)	426	0.2	100.0	16.0
225	Feuille de tamarin, séchée	Mali	225	Feuille de tamarin, séchée	sugar, thiamin, riboflavin, vit B6, niacin, folate, vit C=TACAM : values for reference 228(feuille medium vert cru)+ yield factors	33	0.0	40.8	8.0
379	Gombo, cosse, séché, poudre	Mali	379	Gombo, cosse, séché, poudre	vit B6 & folate = FCT Sénégal Worldfood : ref 1601 (OKRA, DRIED) + no adjustment on dry matter (not given in Worldfood)	300	0.2	103.2	6.7
393	Céleri, cru	Mali	393	Céleri, cru	sugar = USDA20 code 11143 (CELERY, RAW) same moisture (94,6 in TACAM, 95,43 in USDA)	8	0.3	1.4	0.6
1591	courgette	World- food	1532	SQUASH, SUMMER, FRESH- AP	NA	268	0.0	177.0	18.8
		·			/itamin A-Rich Fruits				
180	Mangue, mûre, crue, épluchée	Mali	180	Mangue, mûre, crue, épluchée	Calcium adjusted according to Doets	257	53.7	1331.2	279.5
243	Néré, arbre à farine, fruit	Mali	243	Néré, arbre à farine, fruit	sugar, vit B6, folate, zinc = FCT Sénégal Worldfood : ref 1930 (AFRICAN LOCUST BEAN PULP, FRESH) + no adjustment on dry matter (not given in Worldfood)	2	50.0	61.0	55.5

	FOOD			REFERENCE C	OF NUTRIENT VALUE	USE OF F	OOD NUT		LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
		<u>_</u>			Red Palm Oil and Nut	,			
252	Huile de palme rouge	Mali	252	Huile de palme, éventée / Red palm oil, stale	zinc = FCT Sénégal Worldfood : ref 2604 (PALM OIL, LOCAL) + no adjustment on dry matter (not given in Worldfood)	51	0.3	36.8	3.8
9006	graine de palme	World- food	1470	PALM, NUT	NA	10	98.7	787.6	264.5
9901	extraction par l'eau de <i>-a</i> frine" de palme	World- food	1470	PALM, NUT	YIELD factors	2	28.5	30.8	29.7
	· · · · · ·			V	/itamin C-Rich Fruits				
75	Noix de cola, crue	Mali	75	Noix de cola, crue	sugar, vit B6, folate and zinc = FCT Sénégal Worldfood : ref 1410 (COLANUT, FRESH-EP) + no adjustment on dry matter (not given in Worldfood)	52	2.6	28.0	10.9
77	Pain de singe, graine, séchée	Mali	77	Pain de singe, graine, séchée	sugar, vit A, vit B6, folate, vit C, zinc = FCT Sénégal Worldfood : ref 1815 (BAOBAB, PULP, FLOUR) + no adjustment on dry matter (not given in Worldfood)	2	3.0	5.0	4.0
81	Prune noire, pulpe, cru	Mali	81	Prune noire, pulpe, cru	sugar, vit A, riboflavin, vit B6, niacin, folate, zinc = missing. local fruit, impossible to find data. Very few consumed in small quantity. Value replaced by the most consumed fruit at this period i.e., mango. We select values for ripe mango to avoid artificially increasing vitamin A content.	5	4.0	25.0	13.5
148	Ananas, frais	Mali	148	Ananas, frais	NA	2	0.0	50.0	25.0
153	Banane, mûre, crue	Mali	153	Banane, mûre, crue	iron adjusted according to Doets, 2007	18	10.2	260.0	100.9
157	Citron, lime, cru	Mali	157	Citron, lime, cru	folate = FCT Sénégal Worldfood : ref 1830 (LEMON) + no adjustment on dry matter (not given in Worldfood)	1	5.0	5.0	5.0

	FOOD			REFERENCE C	OF NUTRIENT VALUE	USE OF F			LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
	-	-		Vitamir	C-Rich Fruits (continued)				
167	Finsan	Mali	167	Finsan	sugar, vit B6, folate, zinc = missing. local fruit, impossible to find data. Very few consumed in very small quantity. Value replaced by the most consumed fruit at this period i.e., mango. We select values for ripe mango to avoid artificially increasing vitamin A content. sugar=3 because carbohydrates=3	2	1.6	1.7	1.6
175	Jus d'orange, en conserve	Mali	175	Jus d'orange, en conserve	NA	1	146.0	146.0	146.0
176	Jus d'orange, frais, nonsucré	Mali	176	Jus d'orange, frais, nonsucré	NA	4	12.3	37.0	18.6
177	Jus de citron, en conserve	Mali	177	Jus de citron, en conserve	sugar = FCT Sénégal Worldfood : ref 1830 (LEMON) + no adjustment on dry matter (not given in Worldfood)	2	29.3	44.5	36.9
178	Jus de citron, frais	Mali	178	Jus de citron, frais	ŇA	3	6.5	16.0	9.7
179	Mandarine, orange, cru	Mali	179	Mandarine, orange, cru	lipid adjusted according to Doets, 2007	10	125.0	375.0	233.0
181	Mangue, non mûre, crue, épluchée	Mali	181	Mangue, non mûre, crue, épluchée	NA	2	109.0	288.0	198.5
194	Pomme d'cajou, crue	Mali	194	Pomme d'cajou, crue	sugar, vit B6, folate, zinc = FCT Sénégal Worldfood : ref 1950 (CASHEW FRUIT) + no adjustment on dry matter (not given in Worldfood)	1	80.0	80.0	80.0
199	Saba, fruit, cru	Mali	199	Saba, fruit, cru	sugar, vit B6, folate, zinc = missing. local fruit, impossible to find data. Very few consumed in small quantity. Value replaced by the most consumed fruit at this period i.e., mango. We select values for ripe mango to avoid artificially increasing vitamin A content.	3	25.0	50.0	33.3
203	Baobab pulpe, pain de singe	Mali	203	Baobab pulpe, pain de singe	sugar, vit B6, folate, zinc = FCT Sénégal Worldfood : ref 1814 (BAOBAB, PULP) + no adjustment on dry matter (not given in Worldfood)	2	15.0	75.0	45.0

	FOOD			REFERENCE C	PF NUTRIENT VALUE		OOD NUT		LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
		1		Vitamir	C-Rich Fruits (continued)		1		
231	Fruit d'Oseille de Guinée (dâh), rouge, cru	Mali	231	Fruit d'Oseille de Guinée (dâh), rouge, cru	sugar, thiamin, riboflavin, vit B6, niacin, folate, zinc=FCT Sénégal Worldfood : ref 1680 (SORREL, FRESH CALICES) + no adjustment on dry matter (not given in Worldfood)	17	0.0	68.7	15.8
234	Fruit de tamarin, séché	Mali	234	Fruit de tamarin, séché	folate, zinc = FCT Sénégal Worldfood : ref 1980 (TAMARIND, FRUIT, DRY) + no adjustment on dry matter (not given in Worldfood)	4	0.9	17.6	9.9
9930	jus d'ananas	USDA	09273	PINEAPPLE JUC,CND,UNSWTN D,WO/ VIT C	NA	1	638.0	638.0	638.0
9935	melon, blanc	USDA	09183	MELONS, CASABA, RAW	NA	1	300.0	300.0	300.0
		1			All Other Fruits		1		
74	Noix de coco, noyau mûr, frais	Mali	74	Noix de coco, noyau mûr, frais	zinc = USDA20 code 12104 (<u>COCONUT</u> MEAT,RAW) + yield factors (adjustement on dry matter => value in USDA20*(100-moisture in TACAM)/(100-moisture in USDA20)	6	10.0	51.0	33.1
163	Dattes, séchées	Mali	163	Dattes, séchées	NA	3	7.0	14.0	10.5
195	Pomme, crue	Mali	195	Pomme, crue	NA	6	32.5	146.0	102.4
235	Fruit de tamarin, très sec	Mali	235	Fruit de tamarin, séché	sugar, thiamin, riboflavin, vit B6, niacin, folate, vit C, =FCT Sénégal Worldfood : ref 1980 (TAMARIND, FRUIT, DRY) + no adjustment on dry matter (not given in Worldfood)	2	0.0	0.5	0.3
399	Dattes, crues	USDA	09087	DATES, DEGLET NOOR"	NA	1	15.0	15.0	15.0
9929	olive verte	USDA	09195	OLIVES, PICKLED, CND OR BTLD, GRN	NA	2	7.3	11.2	9.2

	FOOD			REFERENCE (OF NUTRIENT VALUE	USE OF FO	DOD NUTI N WDDP V		LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
					Eggs				
137	Oeuf de poule, cru	Mali	137	Oeuf de poule, cru	sugar = FCT Sénégal Worldfood : ref 2599 (EGG) + no adjustment on dry matter (not given in Worldfood). Vitamin A = adjustment of beta- caroten according to Doets, 2007	10	0.8	345.2	52.9
3170	Oeuf dur	Mixed	x	x	TACAM ref 137 - Geuf de poule, cru" + adjustment of water content on USDA 20 ref 01129 - EGG, WHL, CKD, HARD-BOILED" + retention factor ref 105 - EGGS, HARD COOKED"	4	60.0	120.0	75.0
	1				Milk and Yogurt	1			
125	Lait concentré sucré	Mali	125	Lait concentré sucré	vit A, vit B6, vit B12, zinc = FCT Sénégal Worldfood : ref 2510 (MILK, COW, CONDENSED, SWEETENED) + no adjustment on dry matter (not given in Worldfood) RQ vit A : no value for retinol or beta-carotene. BUT in USDA, retinol=73 and b-car=14 => for a RAE of 74 = we considere b-car is very small in condensed milk and keep the value of 177ott in the table, considering all the 177ott comes from retinol	16	3.7	103.1	36.1
132	Lait entier frais, vache	Mali	132	Lait entier frais, vache	zinc = FCT Sénégal Worldfood : ref 2500 (MILK, COW, FRESH) + no adjustment on dry matter (not given in Worldfood)	3	15.0	79.9	47.4
1288	Café avec sucre et lait	Mali	1288	Café avec sucre et lait	NA	37	20.1	626.7	307.8
1446	Café au lait concentré	Mali	1446	Café au lait concentré	NA	6	51.0	284.0	189.8
1481	Lait, reconstitué de poudre, Nido	Mali	1481	Lait, reconstitué de poudre, Nido	NA	1	500.0	500.0	500.0
3190	yaourt, fan (sucré)	USDA	01116	-YOGURT, PLN, WHL MILK,8 GRAMS PROT PER 8 OZ"	NA	17	15.0	135.0	64.1
9004	lait en poudre	USDA	01090	MILK, DRY, WHOLE"	NA	65	5.0	174.0	32.2
	for an and the state of the sta		T		Cheese				
9026	fromage vache qui rit (fromage fondu)	USDA	01017	CHEESE, CREAM	NA	8	11.3	17.0 (continue	15.2

	FOOD			REFERENCE C	OF NUTRIENT VALUE	USE OF F	OOD NUT		LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
				Chicken, Duck, Tu	rkey, Pigeon, Guinea Hen, Game Birds				
139	Poulet, cru	Mali	139	Poulet, cru	folate = FCT Sénégal Worldfood : ref 2150 (CHICKEN, CLEAN, READY TO COOK) + no adjustment on dry matter (not given in Worldfood)	9	3.1	176.8	50.6
1212	poulet télévisé, cuit	Mixed	x	x	TACAM ref 139 -Poulet, cru"+ adjustment of water content on USDA 20 ref 05004 -GHICKEN, BROILERS OR FRYERS, MEAT & SKN & GIBLETS &NECK, RSTD" + retention factor ref 805 -GHICKEN, ROASTED"	7	86.0	841.3	332.4
				Beef, Pork,	, Veal, Lamb, Goat, Game Meat				
134	Boeuf estomac, cru	Mali	134	Boeuf estomac, cru	vit B12 = FCT Sénégal Worldfood : ref 2104 (BEEF, TRIPE) + no adjustment on dry matter (not given in Worldfood)	194	0.1	12.9	2.6
136	Lapin, cru	Mali	136	Lapin, cru	NA	3	17.7	48.0	37.9
140	Viande de boeuf, très maigre, crue	Mali	140	Viande de boeuf, trés maigre, crue	Vitamin A = adjustment of beta-carotene according to Doets, 2007	115	0.9	134.0	30.0
141	Viande de boeuf, séchée, salée, crue	Mali	141	Viande de boeuf, séchée, salée, crue	vit B6, vit B12, folate & zinc = FCT Sénégal Worldfood : ref 2103 (BEEF, DRIED, W/O BONE) + no adjustment on dry matter (not given in Worldfood)	2	58.9	134.0	96.5
142	Viande de boeuf, un peu grasse, crue	Mali	142	Viande de boeuf, un peu grasse, crue	zinc = FCT Sénégal Worldfood : ref 2101 (BEEF, W/O BONE) + no adjustment on dry matter (not given in Worldfood). Vitamin A = adjustment of beta-caroten according to Doets, 2007	323	0.1	220.5	17.0
143	Viande de chèvre, un peu grasse, crue	Mali	143	Viande de chèvre, un peu grasse, crue	vit B6 = FCT Sénégal Worldfood : ref 2111 (GOAT, FRESH, W/O BONE) + no adjustment on dry matter (not given in Worldfood)	6	10.0	42.3	27.3
144	Viande de mouton, seché, salé, crue	Mali	144	Viande de mouton, seché, salé, crue	vit B6, vit B12, folate = TACAM: value for reference 145 (viande de mouton crue) + adjustment on dry matter	11	3.4	308.4	73.0

	FOOD			REFERENCE C	OF NUTRIENT VALUE		OOD NU	TRIENT VA WORK	LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
		· · ·		Beef, Pork, Veal,	Lamb, Goat, Game Meat (continued)	· · · · · · · · · · · · · · · · · · ·			
145	Viande de mouton, un peu grasse, crue	Mali	145	Viande de mouton, un peu grasse, crue	folate & vit C = TACAM: mean value for all crude meats of the FCT (vitC) /value for reference 143 (Goat, moderately fat, raw) + yield factors (not found in other tables) (folates)	372	0.2	466.0	24.7
146	Viande de porc, un peu grasse, crue	Mali	146	Viande de porc, un peu grasse, crue	vitamin C = FCT Sénégal Worldfood : ref 2161 (PORK, RAW-EP) + no adjustment on dry matter (not given in Worldfood)	11	5.7	100.0	46.8
1201	boyaux préparés	Mixed	x	x	TACAM ref 134 -Boeuf estomac, cru" + adjustment of water content on USDA 20 ref 23640 -BEEF, VAR MEATS & BY- PRODUCTS, TRIPE, CKD, SIMMRD" + retention factor ref 1181 -ORGAN MEATS (NOT LIVER) FRIED"	5	65.0	65.0	65.0
1202	porc au four	Mixed	x	x	TACAM ref 146 -Viande de porc, un peu grasse, crue" + adjustment of water content on USDA 20 ref 10009 -PORK, FRSH, LEG (HAM), WHL, LN & FAT, CKD, RSTD" + retention factor ref 1251 -PORK, FRESH, BROILED"	7	202.7	405.4	325.9
3152	boeuf, brochette	Mixed	x	x	TACAM ref 142 -Viande de boeuf, un peu grasse, crue" + adjustment of water content on USDA 20 ref + retention factor ref 602 -BEEF, BROILED CUT"	11	32.0	96.0	53.6
9012	viande de mouton préparée	Mixed	x	x	TACAM ref 145 -Viande de mouton, un peu grasse, crue"+ adjustment of water content on USDA 20 ref 35141 -Mutton, cooked, roasted (Navajo)" + retention factor ref 2004 -VEAL, ROAST, SIMMERED, W/DRIPPINGS"	29	8.0	375.2	88.6
9015	viande de boeuf préparée	Mixed	x	x	TACAM ref 142 -Viande de boeuf, un peu grasse, crue" + adjustment of water content on USDA 20 ref + retention factor ref 754 -BEEF, GROUND, SIMMERED, W/DRIPPINGS"	63	3.0	405.0	54.7

	FOOD			REFERENCE C	OF NUTRIENT VALUE		OOD NU	TRIENT VA WORK	LUES
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
		_		Beef, Pork, Veal,	Lamb, Goat, Game Meat (continued)				
9017	viande de chèvre préparée	Mixed	x	x	TACAM ref 143 -Viande de chèvre, un peu grasse, crue" + adjustment of water content on USDA 20 ref 17169 -GAME MEAT, GOAT, CKD, RSTD"+ retention factor ref -BEEF, ROAST, BRAISED, W/DRIPPINGS"	3	7.3	51.0	30.0
9023	boyaux de boeuf	Mixed	x	x	TACAM ref 134 -Boeuf estomac, cru" + adjustment of water content on USDA 20 ref 23640 -BEEF, VAR MEATS & BY- PRODUCTS, TRIPE, CKD, SIMMRD" + retention factor ref 1181 -ORGAN MEATS (NOT LIVER) FRIED"	13	8.3	132.2	45.5
9903	saucisson de boeuf	USDA	07050	MORTADELLA, BEEF, PORK	NA	3	75.0	300.0	165.0
9913	peau de boeuf, cuite	USDA	04606	MEAT DRIPPINGS (LARD, BF TALLOW, MUTTON TALLOW)	NA	3	30.0	30.0	30.0
9937	corned beef	USDA	07042	LUNCHEON MEAT, BEEF, LOAVED	NA	6	7.3	100.0	33.7
9942	merguez	USDA	07064	PORK SAUSAGE, FRSH, CKD	justification : no mutton sausage found. What people call merguez' in BF could be more closed to a simple pork sausage than to a blood sausage	1	60.0	60.0	60.0
					Organ Meat				
389	Mouton foie, cru	Mali	389	Mouton foie, cru	sugar = FCT Sénégal Worldfood : ref 2105 (BEEF, LIVER) + no adjustment on dry matter (not given in Worldfood)	5	15.8	27.6	20.5
1203	foie braisé	Mixed	x	x	TACAM mean of ref 389 (Mouton, foie, cru) and 135 (Bœuf, foie, cru) + yield factor for broiling (water content of USDA 20 ref 17201 -LAMB, VAR MEATS & BY-PRODUCTS, LIVER, CKD, PAN-FRIED") + retention factor for broiling (retention code ref 1151 -LIVER, FRIED")	8	12.5	250.0	73.7

	FOOD			REFERENCE C			DD NUTRIENT VALUES WDDP WORK			
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake	
				Large Whole Fish/	Dried Fish/Shellfish and Other Seafood					
84	Carpe d'Afrique, bouillie *	Mali	84	Carpe d'Afrique, bouillie *	vit B6, vit B12, folate, vit C = FCT Sénégal Worldfood : ref 2323(FISH, CARP, RAW-EP) + TACAM retention factors + no adjustment on dry matter (not given in Worldfood)	2	135.0	202.5	168.8	
85	Carpe d'Afrique, crue*	Mali	85	Carpe d'Afrique, crue*	vit A, thiamin, riboflavin, vit B6, vit B12, niacin, folate, vit C, calcium, iron, zinc = FCT Sénégal Worldfood : ref 2323 (FISH, CARP, RAW-EP) + no adjustment on dry matter (not given in Worldfood)	1	166.7	166.7	166.7	
86	Capitaine de mer, cru*	Mali	86	Capitaine de mer, cru*	vit A, thiamin, riboflavin, vit B6, vit B12, niacin, folate, vit C, zinc = FCT Sénégal Worldfood : ref 2399 (FISH, FRESH) + no adjustment on dry matter (not given in Worldfood)	13	29.5	619.3	231.5	
105	Poisson, bouilli, maigre*	Mali	105	Poisson, bouilli, maigre*	vit B6, vit B12, folate, vit C = FCT Sénégal Worldfood : ref 2399 (FISH, FRESH) + TACAM retention factors + no adjustment on dry matter (not given in Worldfood)	38	14.5	200.0	62.3	
108	Poisson, fumé	Mali	108	Poisson, fumé	vit B6, vit B12, folate, vit C = FCT Sénégal Worldfood : ref 2446 (FISH, SMOKED, DRIED-EP) + no adjustment on dry matter (not given in Worldfood)	134	1.1	118.3	15.3	
117	Sardines à huile, conserve#	Mali	117	Sardines à huile, conserve#	NA	12	4.6	150.0	56.5	
121	Carpe, bouillie *	Mali	121	Carpe, bouillie *	vit B6, vit B12, folate, vit C = TACAM : values for reference 105 (poisson bouilli maigre). No adjustment on dry matter because same moisture (79,7 for food 105, 78.6 for food 121)	37	4.7	53.6	25.8	
1051	poisson frais synchar	World- food	2324	FISH, CHINCHARD	NA	341	0.2	432.6	29.6	
1277	Poisson frit	Mali	1277	Poisson frit	NA	385	0.1	236.7	27.4	
9932	thon, conserve	USDA	15121	TUNA, LT, CND IN H2O,DRND SOL	NA	1	4.0	4.0	4.0	

	FOOD			REFERENCE C	OF NUTRIENT VALUE	USE OF FOOD NUTRIENT VALU			
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
-		· · ·	La	rge Whole Fish/Dried F	ish/Shellfish and Other Seafood (continued)				
9933	oeufs de poisson frits	USDA	15207	ROE, MXD SP, CKD, DRY HEAT	for sugar, USDA online ref 26207110 : Roe, shad, cooked	1	10.0	10.0	10.0
9949	gambas, cuite	USDA	15150	SHRIMP, MXD SP, CKD, BREADED & FRIED	for sugar & vitamin A , Worldfood International Mini List reference 2500 (shrimp boiled)	1	20.0	20.0	20.0
					Other				
147	Ail	Mali	147	Ail	NA	579	0.0	16.3	0.9
168	Gingembre, racine, frais	Mali	168	Gingembre, racine, frais	sugar, vit B6, folate, zinc =USDA20 reference 11216 (GINGER ROOT, RAW) + adjustment on dry matter	163	0.0	52.6	7.0
249	Beurre de karité	Mali	249	Beurre de karité	vit A = FCT Sénégal Worldfood : ref 2655 (BUTTER, SHEA-BUTTERSEED) + no adjustment on dry matter (not given in Worldfood)	8	3.6	27.1	11.4
250	Huile d'arachide (b)	Mali	250	Huile d'arachide (b)	vit A = FCT Sénégal Worldfood : ref 2601 (PEANUT OIL, LOCAL) + no adjustment on dry matter (not given in Worldfood)	209	0.2	159.6	12.7
251	Huile de coton (b)	Mali	251	Huile de coton (b)	vit A = FCT Sénégal Worldfood : ref 2601 (PEANUT OIL, LOCAL) + no adjustment on dry matter (not given in Worldfood)	1395	0.2	162.7	12.8
254	Huile de soja	Mali	254	Huile de soja	vit A = FCT Sénégal Worldfood : ref 2601 (PEANUT OIL, LOCAL) + no adjustment on dry matter (not given in Worldfood)	1	16.0	16.0	16.0
255	Miel	Mali	255	Miel	vit A & zinc = FCT Sénégal Worldfood : ref 2050 (HONEY) + no adjustment on dry matter (not given in Worldfood)	1	13.0	13.0	13.0
257	Sucre	Mali	257	Sucre	vit A = FCT Sénégal Worldfood : ref 2000 (SUGAR, CANE, REFINED) + no adjustment on dry matter (not given in Worldfood)	648	0.1	732.5	46.4
258	Bière Europeenne, 4.4 vol%	Mali	258	Bière Europeenne, 4.4 vol%	NA	22	330.0	1300.0	730.5
259	Bonbon	Mali	259	Bonbon	NA	2	2.8	8.4	5.6
261	Chewing gum	Mali	261	Chewing gum	NA	3	4.8	12.0	9.6

FOOD				REFERENCE C	OF NUTRIENT VALUE		USE OF FOOD NUTRIENT VALUES IN WDDP WORK			
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake	
			-		Other (continued)					
262	Cube maggi/Jumbo	Mali	262	Cube maggi/Jumbo	sugar = food industry information (Nestlé Maggi)	1803	0.0	34.0	1.4	
264	Eau	Mali	264	Eau	sugar, vit A, thiamin, riboflavin, vit B6, niacin, folate, vit C, fer, zinc=USDA 20 code 14429 ('WATER, TAP, MUNICIPAL)	4627	0.2	4176.2	251.8	
267	Levure, sec	Mali	267	Levure, sec	NA	189	0.0	8.1	1.7	
268	Mayonnaise, 80% graisse	Mali	268	Mayonnaise, 80% graisse	NA	11	0.5	16.8	7.5	
269	Nescafé, sec	Mali	269	Nescafé, sec	sugar, vit A = FCT Sénégal Worldfood : ref 2816 (COFFEE, POWDERED) + no adjustment on dry matter (not given in Worldfood)	14	0.5	4.0	1.6	
270	Poivre noir	Mali	270	Poivre noir	NA	583	0.0	11.9	0.4	
272	Potassium, liquide	Mali	272	Potassium, liquide	sugar, vit A, thiamin, riboflavin, vit B6, vit B12, niacin, folate, vit C, fer=expert decision (no nutritional content)	269	0.0	28.4	5.3	
273	Potassium, solide (de maïs)	Mali	273	Potassium, solide (de maïs)	sugar, vit A, thiamin, riboflavin, vit B6, vit B12, niacin, folate, vit C, fer=expert decision (no nutritional content)	1144	0.0	7.7	0.6	
277	Sucrerie, cola, fanta	Mali	277	Sucrerie, cola, fanta	sugar = Ref USDA20 numero 14147 (CARBONATED BEV, COLA, WO/CAFFEINE). Limited to 10 because carbohydrates=10	66	116.5	1557.0	518.1	
278	Thé noir, lipton sans sucre	Mali	278	Thé noir, lipton sans sucre	NA	55	2.0	449.0	151.7	
280	sauce Maggi	Mali	280	Vedan/MSG (monosodium glutamate)	sugar, vit A, thiamin, riboflavin, vit B6, niacin, folate, vit C, calcium, fer, zinc=TACAM : values for reference 262 (cube Maggi) (except=0 because carbohydrates=0)	6	1.4	32.8	15.0	
281	Vinaigre	Mali	281	Vinaigre	sugar =FCT Sénégal Worldfood : ref 2834 (VINEGAR, WINE) + no adjustment on dry matter (not given in Worldfood)	57	0.1	13.9	3.5	

	FOOD			REFERENCE O		USE OF FOOD NUTRIENT VALUES IN WDDP WORK			
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake
					Other (continued)				
396	Anis graine	Mali	396	Anis graine	sugar = Worldfood FCT for EGYPTE : reference 100320 "Anise tea". Check after adjustment on dry matter (90% for the seed, 0,2% for the tea)=> values for energy and carbohydrates are proportonal. Value for sugar=0 for anise tea	4	0.0	0.1	0.0
398	Moutarde	Mali	398	Moutarde	NA	11	0.4	28.4	8.9
401	Sel sans iode	Mali	401	Sel sans iode	NA	2299	0.0	55.0	2.4
402	Café sans sucre et sans lait	Mali	402	Café sans sucre et sans lait	NA	23	5.7	501.1	220.5
1287	Café avec sucre	Mali	1287	Café avec sucre	NA	1	377.0	377.0	377.0
1290	Oseille de Guiné bouilli + sucre	Mali	1290	Oseille de Guiné bouilli + sucre	NA	34	20.3	886.0	172.3
1291	Gingembre + sucre	Mali	1291	Gingembre + sucre	NA	40	149.0	1891.5	408.0
1294	Jus de tamarin + sucre	Mali	1294	Jus de tamarin + sucre	NA	10	89.0	199.0	166.1
1295	Thé vert avec sucre	Mali	1295	Thé vert avec sucre	NA	3	39.0	150.0	96.3
1297	Boisson du pain de singe, d'eau + sucre	Mali	1297	Boisson du pain de singe, d'eau + sucre	NA	5	27.0	54.0	37.8
3070	biscuits emballés	USDA	18009	"'BISCUITS, PLN OR BTTRMLK, COMMLY BKD"	NA	9	11.0	101.1	40.6
3231	caramel avec lait et sucre	USDA	19383	"'CANDIES, TOFFEE, PREPARED-FROM- RECIPE"	NA	7	12.0	63.0	30.4
4060	jus de fruit industriel, indéfini	USDA	42270	"'ORANGE JUICE DRINK"	NA	6	60.5	550.0	248.1
4080	dolo	World- food	2751	BEER, MADE FROM MILLET	NA	42	107.2	1789.5	628.2
4100	vin, sangria	USDA	14084	"ALCOHOLIC BEV, WINE, TABLE, ALL"	NA	5	152.0	375.0	288.0
9908	beurre indéfini/margarine	USDA	04131	MARGARINE, REG, UNSPEC OILS, WO/ SALT	NA	60	0.4	23.1	6.1

	FOOD		REFERENCE OF NUTRIENT VALUE					USE OF FOOD NUTRIENT VALUES IN WDDP WORK			
Code of Food	Name in French	Table of Origin	Code in FCT of Ref.	Name in Reference FCT	Notes	Frequency Over the 3 Rounds (Total N = 33980)	Mini- mum Intake	Maxi- mum Intake	Mean Intake		
					Other (continued)						
9911	graisse de mouton	USDA	04520	FAT, MUTTON TALLOW	NA	10	0.2	209.7	26.9		
9912	beurre de lait	USDA	01145	BUTTER, WITHOUT SALT	NA	7	3.0	8.0	7.3		
9923	levure chimique	USDA	18369	LEAVENING AGENTS, BAKING PDR, DOUBLE- ACTING, NA AL SULFATE	NA	4	0.7	2.2	1.1		
9931	chocolat en poudre sucré	USDA	14175	CHOCOLATE- FLAVOR BEV MIX FOR MILK, PDR, WO/ ADDED NUTR	NA	1	5.0	5.0	5.0		
9938	Aloe Vera	The Food Proces sor SQL	to be filled in	Juice, aloe vera	for folate and sugar, Worldfood international minilist, reference 139 "pulque, cactus" (= alcohol of cactus). Almost same dry matter (9% vs 11%) and energy (40 vs 43 kcal). we consider that folate=the same that the sugar of the aloe drink correspond to the alcohol of the pulque (No adjustment on dry matter)	5	1.0	24.0	10.2		
9941	huile d'olive	USDA	04053	OIL, OLIVE, SALAD OR COOKING	NA	2	2.3	2.5	2.4		
9951	huile de palme	USDA	04513	VEGETABLE OIL, PALM KERNEL	NA	149	0.4	83.5	10.1		