MULTI-SECTORAL NUTRITION Global Learning and Evidence Exchange Washington, DC

Climate Smart Agriculture and Nutrition Mark Visocky, USAID BFS/CSI Climate Smart Agriculture Team

END HUNGER, ACHIEVE FOOD SECURITY AND IMPROVED NUTRITION AND PROMOTE SUSTAINABLE AGRICULTURE

SUSTAINABLE DEVELOPMENT GOALS

More at sustainabledevelopment.un.org/sdgsproposal

Nepal Glaciers: 1899, 1921, 2009

Multi-Sectoral Nutrition Strategy Global Learning and Evidence Exchange Washington, DC

Fundamental Concepts & Definitions

Weather: state of the atmosphere around us at a given time:

Temperature | precipitation | humidity | wind |

Climate: average over a certain timespan and space e.g. Time – pre-industrial, 1980s-present Space – global climate, Sahelian climate, local climate

Climate is what you expect, Weather is what you get!

Climate Change:

•Shift in statistical properties of the climate system considered over long periods of time

•Changes in the mean state and/or variability of the climate

Integration of Climate Change, NRM & Agriculture

Components

Challenges

Intersection of Climate Change and Agriculture

- Climate change poses major risks
 - Erratic temperatures, precipitation changes, rising sea levels and the increase in frequency and severity of extreme weather events.
- Small-holder farmers, pastoralists and fishers especially vulnerable as their production systems often lack the resources to manage an effective response to climate threats.

Image from http://bit.ly/1BhCdBb

FIGURE 6.1 Conceptual links between climate change and nutrition

http://globalnutritionreport.org/files/2015/11/SNAG_Program-0027.png

Climate and Weather (rainfall, temperature) affect Nutrition by:

Agricultural Production Health, Disease

Multi-Sectoral Nutrition Strategy Global Learning and Evidence Exchange Washington, DC

Climate Change will exacerbate undernutrition through three main causal pathways:

- impacts on household access to sufficient, safe and adequate food;
- impacts on care and feeding practices; and
- impacts on environmental health and access to health services

Food and Agriculture Organization of the United Nations

Temperature, Precipitation and Birth Weight in Africa

- Temperature and precipitation may impact birth weight outcomes.
- Maternal nutrition experiences may link birth weight and climate variability.
- Birth weight outcomes are impacted by changes in the number of hot days and precipitation amounts.
- The linkages between birth weight and climate exist apart from socio-economic variability.

Grace et al. Global Environmental Change Volume 35, November 2015, Pages 125–137

High CO2 cuts crop nutrients

Rising levels of CO2 are affecting human nutrition by reducing levels of very important nutrients in key food crops Crops grown in the high-CO2 atmosphere of the future could be significantly less nutritious,

SOURCE: NATURE

Extended Data Table 4 | Percentage change in nutrient content at elevated [CO₂] compared with ambient [CO₂] for all nutrients

	C3 grasses						C3 legumes						C4 grasses					
	Wheat			Rice			Field Peas			Soybean			Maize			Sorghum		
	%	95% CI	P-value	%	95% CI	P-value	%	95% CI	P-value	%	95% CI	P-value	%	95% CI	P-value	%	95% CI	P-value
Zinc (ppm)	-9.3	(-12.7,-5.9)	<.0001	-3.3	(-5.0,-1.7)	<.0001	-6.8	(-9.8,-3.8)	<.0001	-5.1	(-6.4,-3.9)	<.0001	-5.2	(-10.7,0.6)	0.077	-1.3	(-6.2,3.8)	0.603
Iron (ppm)	-5.1	(-6.5,-3.7)	<.0001	-5.2	(-7.6,-2.9)	<.0001	-4.1	(-6.7,-1.4)	<.0001	-4.1	(-5.8,-2.5)	<.0001	-5.8	(-10.9,-0.3)	0.038	1.6	(-5.8,9.7)	0.674
Phytate (mg/g)	-4.2	(-7.5,-0.8)	0.009	1.2	(-4.6,7.4)	0.7	-5.8	(-11.5,0.1)	0.055	-1.3	(-3.7,1.2)	0.303	-6.1	(-15.0,3.7)	0.215	12.8	(-15.8,51.1)	0.418
Protein	-6.3	(-7.5,-5.2)	<.0001	-7.8	(-8.9,-6.8)	<.0001	-2.1	(-4.0,-0.1)	0.039	0.5	(-0.4,1.3)	0.267	-4.6	(-13.0,4.5)	0.312	0.0	(-4.9,5.2)	0.993
Mn (ppm)				-7.5	(-12.0,-2.8)	<.0001	-2.5	(-4.2,-0.8)	0.005	-1.4	(-3.5,0.8)	0.204	-4.2	(-10.5,2.5)	0.215	1.7	(-4.5,8.3)	0.596
Mg (%)				-0.9	(-2.3,0.6)	0.24	0.0	(-1.3,1.4)	0.960	-3.5	(-4.3,-2.8)	<.0001	-5.7	(-9.9,-1.3)	0.011	-0.2	(-5.1,4.9)	0.944
Cu (ppm)				-10.6	(-13.8,-7.1)	<.0001	-2.7	(-5.1,-0.3)	0.025	-5.7	(-8.0,-3.4)	<.0001	-9.9	(-19.3,0.7)	0.066	-2.9	(-7.1,1.5)	0.190
Ca (%)				2	(-0.8,4.9)	0.16	-0.5	(-4.2,3.3)	0.787	-5.8	(-7.3,-4.2)	<.0001	-2.7	(-16.9,13.9)	0.734	11.2	(-5.2,30.3)	0.190
S (ppm)				-7.8	(-8.8,-6.8)	<.0001	-2.2	(-3.6,-0.7)	0.003	-2.9	(-3.5,-2.2)	<.0001	2.1	(-2.2,6.7)	0.342	-0.2	(-5.4,5.2)	0.936
K (%)				1.1	(-0.3,2.5)	0.13	2.2	(0.6,3.8)	0.008	0.1	(-0.8,1.0)	0.857	-2.7	(-3.1,-2.2)	<.0001	3.0	(-2.7,9.1)	0.308
B (ppm)				5.1	(1.9,8.4)	0.002	-1.9	(-3.9,0.1)	0.057	-6.4	(-9.1,-3.6)	<.0001	4.9	(-1.0,11.1)	0.107	-0.3	(-9.3,9.6)	0.952
P (%)				-1.0	(-2.4,0.4)	0.160	-3.7	(-6.8,-0.5)	0.023	-0.7	(-2.2,0.9)	0.379	-7.1	(-9.0,-5.1)	<.0001	0.3	(-4.0,4.9)	0.881

Sample sizes for each crop type are identical to those listed in Table 1.

2015 Global Nutrition Report calls for greater collaboration between nutrition and climate change communities.

- Changes in climate patterns expected to negatively impact nutrition by
 - reducing production,
 - influencing disease prevalence,
 - increasing post-harvest losses.

- Diet choice and associated production systems imply varying resource footprints, affecting climate outcomes.
- Continue to promote Dietary Diversity!

Climate change can undermine development

Agriculture

Temperature increases and changes in precipitation can affect crop yields, with subsequent impacts on food security and livelihoods.

Health

Changes in temperature and precipitation can shift the range and incidence of vector-borne diseases

Infrastructure and ecosystems

Sea level rise and storm surge can harm vital coastal ecosystems, infrastructure, and settlements

• Democracy and Governance

The impacts of climate change can compound pre-existing and overlapping social, political, and economic stresses

ALSO...CLIMATE CHANGE CAN PROVIDE NEW OPPORTUNITIES FOR DEVELOPMENT

Agriculture

Changes in temperature and precipitation may provide opportunities to cultivate different crops that are more suitable for changing climate conditions

Health

Increased concern about climate-related diseases may provide new entrypoints for expanded public health education and awareness-raising

Infrastructure and ecosystems

The need to relocate infrastructure from high risk areas may provide opportunities for ecosystem restoration

Democracy and Governance

Increased water scarcity may be an impetus for new coalitions to address common concerns

A working definition of CSA

- Sustainably increasing agricultural productivity and incomes;
- Adapting and building resilience to climate change; and
- Reducing and/or removing greenhouse gas emissions, where <u>appropriate</u> (the FAO definition uses possible).

Image courtesy of FAO

Development Policy Context for CSA

- September 23, 2014 President Obama issued Executive Order #13677 on Climate-Resilient International Development at the UN Secretary-General's "Climate Summit"
- USG joined many other nations and organizations in launching the Global Alliance for Climate Smart Agriculture

USAID Implementation Plan

- October 1, 2015: Climate risk screening required for new R/CDCS
- FY 2016:
 - Missions incorporate climate risk management in R/CDCS
 - Climate change facilitators provide support as requested
 - Climate risk management for sample (~20) projects and activities
 - PAD/Activity-level guidance developed

October 1, 2016: Climate risk screening and management required for new projects and activities

CLIMATE CHANGE IS A **THREAT** TO GLOBAL NUTRITON

Diminishes key crops' nutrients

THE CHICAGO COUNCIL

ON GLOBAL AFFAIRS

Slows growth of food production

Spreads pests, diseases, & pathogens

#GlobalAg thechicagocouncil.org/globalag

Sources: Bebber et al. 2013; Myers et al. 2014; Nelson 2014.

Multi-Sectoral Nutrition Strategy Global Learning and Evidence Exchange Washington, DC

East Africa is also a major hotspot for climate change

Maximum temperatures

Rainfall uncertainties

Climate change - season length impact

yield losses under climate change

